Spaces:
Sleeping
Sleeping
JaphetHernandez
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -28,14 +28,11 @@ model_id = "fireworks-ai/firefunction-v2"
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
29 |
model = AutoModelForCausalLM.from_pretrained(
|
30 |
model_id,
|
31 |
-
device_map="auto", # Permitir
|
32 |
torch_dtype=torch.float16,
|
33 |
quantization_config=quant_config
|
34 |
)
|
35 |
|
36 |
-
# Asegurar que el modelo est茅 en la GPU
|
37 |
-
model.to("cuda")
|
38 |
-
|
39 |
# Establecer el token de relleno
|
40 |
if tokenizer.pad_token_id is None:
|
41 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
@@ -68,12 +65,19 @@ if uploaded_file is not None:
|
|
68 |
batch_size = 4 # Reducir batch size para minimizar el uso de memoria
|
69 |
job_titles_batches = [job_titles[i:i+batch_size] for i in range(0, len(job_titles), batch_size)]
|
70 |
|
71 |
-
# Definir el prompt para Fireworks
|
72 |
prompt_template = PromptTemplate(
|
73 |
template=(
|
74 |
-
"
|
75 |
-
"
|
76 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
77 |
),
|
78 |
input_variables=["query", "job_titles"]
|
79 |
)
|
@@ -90,13 +94,13 @@ if uploaded_file is not None:
|
|
90 |
all_scores = []
|
91 |
try:
|
92 |
for batch in job_titles_batches:
|
93 |
-
# Tokenizar la entrada y mover a CUDA
|
94 |
model_inputs = tokenizer(
|
95 |
batch,
|
96 |
return_tensors="pt",
|
97 |
padding=True,
|
98 |
truncation=True
|
99 |
-
).to("cuda") # Mover
|
100 |
|
101 |
with torch.cuda.amp.autocast(): # Usar Mixed Precision
|
102 |
model_inputs['attention_mask'] = (model_inputs['input_ids'] != tokenizer.pad_token_id).int().to("cuda")
|
|
|
28 |
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
29 |
model = AutoModelForCausalLM.from_pretrained(
|
30 |
model_id,
|
31 |
+
device_map="auto", # Permitir offloading autom谩tico entre CPU y GPU
|
32 |
torch_dtype=torch.float16,
|
33 |
quantization_config=quant_config
|
34 |
)
|
35 |
|
|
|
|
|
|
|
36 |
# Establecer el token de relleno
|
37 |
if tokenizer.pad_token_id is None:
|
38 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
|
|
65 |
batch_size = 4 # Reducir batch size para minimizar el uso de memoria
|
66 |
job_titles_batches = [job_titles[i:i+batch_size] for i in range(0, len(job_titles), batch_size)]
|
67 |
|
68 |
+
# Definir el prompt para Fireworks con formato de funci贸n
|
69 |
prompt_template = PromptTemplate(
|
70 |
template=(
|
71 |
+
"Function: calculate_cosine_similarity\n"
|
72 |
+
"Description: Calculate the cosine similarity between the given query and job titles.\n"
|
73 |
+
"Parameters:\n"
|
74 |
+
" - query: The query string to compare.\n"
|
75 |
+
" - job_titles: A list of job titles to compare against.\n"
|
76 |
+
"Input:\n"
|
77 |
+
" query: '{query}'\n"
|
78 |
+
" job_titles: {job_titles}\n"
|
79 |
+
"Output:\n"
|
80 |
+
" Return the results as 'Job Title: [Job Title], Score: [Cosine Similarity Score]'."
|
81 |
),
|
82 |
input_variables=["query", "job_titles"]
|
83 |
)
|
|
|
94 |
all_scores = []
|
95 |
try:
|
96 |
for batch in job_titles_batches:
|
97 |
+
# Tokenizar la entrada y mover los tensores a CUDA
|
98 |
model_inputs = tokenizer(
|
99 |
batch,
|
100 |
return_tensors="pt",
|
101 |
padding=True,
|
102 |
truncation=True
|
103 |
+
).to("cuda") # Mover solo los tensores de entrada a CUDA
|
104 |
|
105 |
with torch.cuda.amp.autocast(): # Usar Mixed Precision
|
106 |
model_inputs['attention_mask'] = (model_inputs['input_ids'] != tokenizer.pad_token_id).int().to("cuda")
|