JaphetHernandez commited on
Commit
275dee5
verified
1 Parent(s): dbd2f4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +31 -25
app.py CHANGED
@@ -1,8 +1,8 @@
1
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
2
- from accelerate import init_empty_weights, load_checkpoint_and_dispatch, dispatch_model, infer_auto_device_map
3
  import streamlit as st
4
  from huggingface_hub import login
5
  import pandas as pd
 
6
 
7
  # Token Secret de Hugging Face
8
  huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
@@ -11,23 +11,13 @@ login(huggingface_token)
11
  # Cargar el tokenizador y el modelo
12
  model_id = "meta-llama/Llama-3.2-1B"
13
  tokenizer = AutoTokenizer.from_pretrained(model_id)
14
- model = AutoModelForCausalLM.from_pretrained(model_id) #, device_map="auto")
15
  tokenizer.pad_token = tokenizer.eos_token
16
 
17
  MAX_INPUT_TOKEN_LENGTH = 10000
18
 
19
- # Cargar el modelo con disk_offload
20
- with init_empty_weights():
21
- model = AutoModelForCausalLM.from_config(model_id)
22
-
23
- device_map = infer_auto_device_map(model, max_memory={"disk": "2GiB"}, no_split_module_classes=["LlamaDecoderLayer"])
24
- model = load_checkpoint_and_dispatch(model, model_id, device_map=device_map, offload_folder="offload_dir")
25
-
26
- MAX_INPUT_TOKEN_LENGTH = 10000
27
-
28
-
29
  def generate_response(input_text, temperature=0.7, max_new_tokens=20):
30
- input_ids = tokenizer.encode(input_text, return_tensors='pt').to("cpu") # Usar 'cpu' para mantener la compatibilidad
31
 
32
  if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
33
  input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
@@ -43,14 +33,22 @@ def generate_response(input_text, temperature=0.7, max_new_tokens=20):
43
  top_p=0.9,
44
  temperature=temperature,
45
  num_return_sequences=3,
46
- eos_token_id=tokenizer.eos_token_id
47
  )
48
 
49
  try:
50
- outputs = model.generate(**generate_kwargs)
51
-
52
- response = tokenizer.decode(outputs[0], skip_special_tokens=True).strip()
53
- return response.split("\n")[0]
 
 
 
 
 
 
 
 
54
  except Exception as e:
55
  st.error(f"Error durante la generaci贸n: {e}")
56
  return "Error en la generaci贸n de texto."
@@ -63,20 +61,28 @@ def main():
63
  if uploaded_file is not None:
64
  df = pd.read_csv(uploaded_file)
65
  query = 'aspiring human resources specialist'
66
-
67
  if 'job_title' in df.columns:
68
- job_titles = df['job_title'].tolist()
69
 
70
  # Definir el prompt con in-context learning
71
  initial_prompt = (
72
- f"Extract the first record from the dataframe df.\n"
73
- f"First job title: '{df.iloc[0]['job_title']}'\n"
74
- f"Calculate the cosine similarity between this job title and the query: '{query}'.\n"
75
- "Print the cosine similarity score."
 
 
 
 
 
 
76
  )
77
 
 
78
  st.write("Prompt inicial con In-context Learning:\n")
79
  st.write(initial_prompt)
 
80
 
81
  if st.button("Generar respuesta"):
82
  with st.spinner("Generando respuesta..."):
@@ -96,4 +102,4 @@ def main():
96
  st.error("La columna 'job_title' no se encuentra en el archivo CSV.")
97
 
98
  if __name__ == "__main__":
99
- main()
 
1
  from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
 
2
  import streamlit as st
3
  from huggingface_hub import login
4
  import pandas as pd
5
+ from threading import Thread
6
 
7
  # Token Secret de Hugging Face
8
  huggingface_token = st.secrets["HUGGINGFACEHUB_API_TOKEN"]
 
11
  # Cargar el tokenizador y el modelo
12
  model_id = "meta-llama/Llama-3.2-1B"
13
  tokenizer = AutoTokenizer.from_pretrained(model_id)
14
+ model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto")
15
  tokenizer.pad_token = tokenizer.eos_token
16
 
17
  MAX_INPUT_TOKEN_LENGTH = 10000
18
 
 
 
 
 
 
 
 
 
 
 
19
  def generate_response(input_text, temperature=0.7, max_new_tokens=20):
20
+ input_ids = tokenizer.encode(input_text, return_tensors='pt').to(model.device)
21
 
22
  if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
23
  input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
 
33
  top_p=0.9,
34
  temperature=temperature,
35
  num_return_sequences=3,
36
+ eos_token_id=[tokenizer.eos_token_id]
37
  )
38
 
39
  try:
40
+ t = Thread(target=model.generate, kwargs=generate_kwargs)
41
+ t.start()
42
+ t.join() # Asegura que la generaci贸n haya terminado
43
+
44
+ outputs = []
45
+ for text in streamer:
46
+ outputs.append(text)
47
+ if not outputs:
48
+ raise ValueError("No se gener贸 ninguna respuesta.")
49
+
50
+ response = "".join(outputs).strip().split("\n")[0]
51
+ return response
52
  except Exception as e:
53
  st.error(f"Error durante la generaci贸n: {e}")
54
  return "Error en la generaci贸n de texto."
 
61
  if uploaded_file is not None:
62
  df = pd.read_csv(uploaded_file)
63
  query = 'aspiring human resources specialist'
64
+ value = 0.00
65
  if 'job_title' in df.columns:
66
+ job_titles = df['job_title']
67
 
68
  # Definir el prompt con in-context learning
69
  initial_prompt = (
70
+ "Step 1: Extract the first record from the dataframe df.\n"
71
+ f" {df.iloc[0]['job_title']}\n"
72
+ #f"List: {job_titles}\n"
73
+ #"First job title: \n"
74
+ #"\n"
75
+ "Step 2: Calculate the cosine similarity score between the job_title of the extracted record {df.iloc[0]['job_title']} and the given {query} and assign it to {value}.\n"
76
+ f"Query: '{query}'\n"
77
+ "Cosine similarity score: \n"
78
+ "Step 3: Print the value of the calculated cosine similarity"
79
+ f"Result: {value}"
80
  )
81
 
82
+
83
  st.write("Prompt inicial con In-context Learning:\n")
84
  st.write(initial_prompt)
85
+ st.write(query)
86
 
87
  if st.button("Generar respuesta"):
88
  with st.spinner("Generando respuesta..."):
 
102
  st.error("La columna 'job_title' no se encuentra en el archivo CSV.")
103
 
104
  if __name__ == "__main__":
105
+ main()