|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from scene.cameras import Camera |
|
import numpy as np |
|
from utils.graphics_utils import fov2focal |
|
from PIL import Image |
|
import cv2 |
|
|
|
WARNED = False |
|
|
|
def loadCam(args, id, cam_info, resolution_scale, is_nerf_synthetic, is_test_dataset): |
|
image = Image.open(cam_info.image_path) |
|
|
|
if cam_info.depth_path != "": |
|
try: |
|
if is_nerf_synthetic: |
|
invdepthmap = cv2.imread(cam_info.depth_path, -1).astype(np.float32) / 512 |
|
else: |
|
invdepthmap = cv2.imread(cam_info.depth_path, -1).astype(np.float32) / float(2**16) |
|
|
|
except FileNotFoundError: |
|
print(f"Error: The depth file at path '{cam_info.depth_path}' was not found.") |
|
raise |
|
except IOError: |
|
print(f"Error: Unable to open the image file '{cam_info.depth_path}'. It may be corrupted or an unsupported format.") |
|
raise |
|
except Exception as e: |
|
print(f"An unexpected error occurred when trying to read depth at {cam_info.depth_path}: {e}") |
|
raise |
|
else: |
|
invdepthmap = None |
|
|
|
orig_w, orig_h = image.size |
|
if args.resolution in [1, 2, 4, 8]: |
|
resolution = round(orig_w/(resolution_scale * args.resolution)), round(orig_h/(resolution_scale * args.resolution)) |
|
else: |
|
if args.resolution == -1: |
|
if orig_w > 1600: |
|
global WARNED |
|
if not WARNED: |
|
print("[ INFO ] Encountered quite large input images (>1.6K pixels width), rescaling to 1.6K.\n " |
|
"If this is not desired, please explicitly specify '--resolution/-r' as 1") |
|
WARNED = True |
|
global_down = orig_w / 1600 |
|
else: |
|
global_down = 1 |
|
else: |
|
global_down = orig_w / args.resolution |
|
|
|
|
|
scale = float(global_down) * float(resolution_scale) |
|
resolution = (int(orig_w / scale), int(orig_h / scale)) |
|
|
|
return Camera(resolution, colmap_id=cam_info.uid, R=cam_info.R, T=cam_info.T, |
|
FoVx=cam_info.FovX, FoVy=cam_info.FovY, depth_params=cam_info.depth_params, |
|
image=image, invdepthmap=invdepthmap, |
|
image_name=cam_info.image_name, uid=id, data_device=args.data_device, |
|
train_test_exp=args.train_test_exp, is_test_dataset=is_test_dataset, is_test_view=cam_info.is_test) |
|
|
|
def cameraList_from_camInfos(cam_infos, resolution_scale, args, is_nerf_synthetic, is_test_dataset): |
|
camera_list = [] |
|
|
|
for id, c in enumerate(cam_infos): |
|
camera_list.append(loadCam(args, id, c, resolution_scale, is_nerf_synthetic, is_test_dataset)) |
|
|
|
return camera_list |
|
|
|
def camera_to_JSON(id, camera : Camera): |
|
Rt = np.zeros((4, 4)) |
|
Rt[:3, :3] = camera.R.transpose() |
|
Rt[:3, 3] = camera.T |
|
Rt[3, 3] = 1.0 |
|
|
|
W2C = np.linalg.inv(Rt) |
|
pos = W2C[:3, 3] |
|
rot = W2C[:3, :3] |
|
serializable_array_2d = [x.tolist() for x in rot] |
|
camera_entry = { |
|
'id' : id, |
|
'img_name' : camera.image_name, |
|
'width' : camera.width, |
|
'height' : camera.height, |
|
'position': pos.tolist(), |
|
'rotation': serializable_array_2d, |
|
'fy' : fov2focal(camera.FovY, camera.height), |
|
'fx' : fov2focal(camera.FovX, camera.width) |
|
} |
|
return camera_entry |