|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import os |
|
import sys |
|
from PIL import Image |
|
from typing import NamedTuple |
|
from scene.colmap_loader import read_extrinsics_text, read_intrinsics_text, qvec2rotmat, \ |
|
read_extrinsics_binary, read_intrinsics_binary, read_points3D_binary, read_points3D_text |
|
from utils.graphics_utils import getWorld2View2, focal2fov, fov2focal |
|
import numpy as np |
|
import json |
|
from pathlib import Path |
|
from plyfile import PlyData, PlyElement |
|
from utils.sh_utils import SH2RGB |
|
from scene.gaussian_model import BasicPointCloud |
|
|
|
class CameraInfo(NamedTuple): |
|
uid: int |
|
R: np.array |
|
T: np.array |
|
FovY: np.array |
|
FovX: np.array |
|
depth_params: dict |
|
image_path: str |
|
image_name: str |
|
depth_path: str |
|
width: int |
|
height: int |
|
is_test: bool |
|
|
|
class SceneInfo(NamedTuple): |
|
point_cloud: BasicPointCloud |
|
train_cameras: list |
|
test_cameras: list |
|
nerf_normalization: dict |
|
ply_path: str |
|
is_nerf_synthetic: bool |
|
|
|
def getNerfppNorm(cam_info): |
|
def get_center_and_diag(cam_centers): |
|
cam_centers = np.hstack(cam_centers) |
|
avg_cam_center = np.mean(cam_centers, axis=1, keepdims=True) |
|
center = avg_cam_center |
|
dist = np.linalg.norm(cam_centers - center, axis=0, keepdims=True) |
|
diagonal = np.max(dist) |
|
return center.flatten(), diagonal |
|
|
|
cam_centers = [] |
|
|
|
for cam in cam_info: |
|
W2C = getWorld2View2(cam.R, cam.T) |
|
C2W = np.linalg.inv(W2C) |
|
cam_centers.append(C2W[:3, 3:4]) |
|
|
|
center, diagonal = get_center_and_diag(cam_centers) |
|
radius = diagonal * 1.1 |
|
|
|
translate = -center |
|
|
|
return {"translate": translate, "radius": radius} |
|
|
|
def readColmapCameras(cam_extrinsics, cam_intrinsics, depths_params, images_folder, depths_folder, test_cam_names_list): |
|
cam_infos = [] |
|
for idx, key in enumerate(cam_extrinsics): |
|
sys.stdout.write('\r') |
|
|
|
sys.stdout.write("Reading camera {}/{}".format(idx+1, len(cam_extrinsics))) |
|
sys.stdout.flush() |
|
|
|
extr = cam_extrinsics[key] |
|
intr = cam_intrinsics[extr.camera_id] |
|
height = intr.height |
|
width = intr.width |
|
|
|
uid = intr.id |
|
R = np.transpose(qvec2rotmat(extr.qvec)) |
|
T = np.array(extr.tvec) |
|
|
|
if intr.model=="SIMPLE_PINHOLE": |
|
focal_length_x = intr.params[0] |
|
FovY = focal2fov(focal_length_x, height) |
|
FovX = focal2fov(focal_length_x, width) |
|
elif intr.model=="PINHOLE": |
|
focal_length_x = intr.params[0] |
|
focal_length_y = intr.params[1] |
|
FovY = focal2fov(focal_length_y, height) |
|
FovX = focal2fov(focal_length_x, width) |
|
else: |
|
assert False, "Colmap camera model not handled: only undistorted datasets (PINHOLE or SIMPLE_PINHOLE cameras) supported!" |
|
|
|
n_remove = len(extr.name.split('.')[-1]) + 1 |
|
depth_params = None |
|
if depths_params is not None: |
|
try: |
|
depth_params = depths_params[extr.name[:-n_remove]] |
|
except: |
|
print("\n", key, "not found in depths_params") |
|
|
|
image_path = os.path.join(images_folder, extr.name) |
|
image_name = extr.name |
|
depth_path = os.path.join(depths_folder, f"{extr.name[:-n_remove]}.png") if depths_folder != "" else "" |
|
|
|
cam_info = CameraInfo(uid=uid, R=R, T=T, FovY=FovY, FovX=FovX, depth_params=depth_params, |
|
image_path=image_path, image_name=image_name, depth_path=depth_path, |
|
width=width, height=height, is_test=image_name in test_cam_names_list) |
|
cam_infos.append(cam_info) |
|
|
|
sys.stdout.write('\n') |
|
return cam_infos |
|
|
|
def fetchPly(path): |
|
plydata = PlyData.read(path) |
|
vertices = plydata['vertex'] |
|
positions = np.vstack([vertices['x'], vertices['y'], vertices['z']]).T |
|
colors = np.vstack([vertices['red'], vertices['green'], vertices['blue']]).T / 255.0 |
|
normals = np.vstack([vertices['nx'], vertices['ny'], vertices['nz']]).T |
|
return BasicPointCloud(points=positions, colors=colors, normals=normals) |
|
|
|
def storePly(path, xyz, rgb): |
|
|
|
dtype = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), |
|
('nx', 'f4'), ('ny', 'f4'), ('nz', 'f4'), |
|
('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] |
|
|
|
normals = np.zeros_like(xyz) |
|
|
|
elements = np.empty(xyz.shape[0], dtype=dtype) |
|
attributes = np.concatenate((xyz, normals, rgb), axis=1) |
|
elements[:] = list(map(tuple, attributes)) |
|
|
|
|
|
vertex_element = PlyElement.describe(elements, 'vertex') |
|
ply_data = PlyData([vertex_element]) |
|
ply_data.write(path) |
|
|
|
def readColmapSceneInfo(path, images, depths, eval, train_test_exp, llffhold=8): |
|
try: |
|
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.bin") |
|
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.bin") |
|
cam_extrinsics = read_extrinsics_binary(cameras_extrinsic_file) |
|
cam_intrinsics = read_intrinsics_binary(cameras_intrinsic_file) |
|
except: |
|
cameras_extrinsic_file = os.path.join(path, "sparse/0", "images.txt") |
|
cameras_intrinsic_file = os.path.join(path, "sparse/0", "cameras.txt") |
|
cam_extrinsics = read_extrinsics_text(cameras_extrinsic_file) |
|
cam_intrinsics = read_intrinsics_text(cameras_intrinsic_file) |
|
|
|
depth_params_file = os.path.join(path, "sparse/0", "depth_params.json") |
|
|
|
depths_params = None |
|
if depths != "": |
|
try: |
|
with open(depth_params_file, "r") as f: |
|
depths_params = json.load(f) |
|
all_scales = np.array([depths_params[key]["scale"] for key in depths_params]) |
|
if (all_scales > 0).sum(): |
|
med_scale = np.median(all_scales[all_scales > 0]) |
|
else: |
|
med_scale = 0 |
|
for key in depths_params: |
|
depths_params[key]["med_scale"] = med_scale |
|
|
|
except FileNotFoundError: |
|
print(f"Error: depth_params.json file not found at path '{depth_params_file}'.") |
|
sys.exit(1) |
|
except Exception as e: |
|
print(f"An unexpected error occurred when trying to open depth_params.json file: {e}") |
|
sys.exit(1) |
|
|
|
if eval: |
|
if "360" in path: |
|
llffhold = 8 |
|
if llffhold: |
|
print("------------LLFF HOLD-------------") |
|
cam_names = [cam_extrinsics[cam_id].name for cam_id in cam_extrinsics] |
|
cam_names = sorted(cam_names) |
|
test_cam_names_list = [name for idx, name in enumerate(cam_names) if idx % llffhold == 0] |
|
else: |
|
with open(os.path.join(path, "sparse/0", "test.txt"), 'r') as file: |
|
test_cam_names_list = [line.strip() for line in file] |
|
else: |
|
test_cam_names_list = [] |
|
|
|
reading_dir = "images" if images == None else images |
|
cam_infos_unsorted = readColmapCameras( |
|
cam_extrinsics=cam_extrinsics, cam_intrinsics=cam_intrinsics, depths_params=depths_params, |
|
images_folder=os.path.join(path, reading_dir), |
|
depths_folder=os.path.join(path, depths) if depths != "" else "", test_cam_names_list=test_cam_names_list) |
|
cam_infos = sorted(cam_infos_unsorted.copy(), key = lambda x : x.image_name) |
|
|
|
train_cam_infos = [c for c in cam_infos if train_test_exp or not c.is_test] |
|
test_cam_infos = [c for c in cam_infos if c.is_test] |
|
|
|
nerf_normalization = getNerfppNorm(train_cam_infos) |
|
|
|
ply_path = os.path.join(path, "sparse/0/points3D.ply") |
|
bin_path = os.path.join(path, "sparse/0/points3D.bin") |
|
txt_path = os.path.join(path, "sparse/0/points3D.txt") |
|
if not os.path.exists(ply_path): |
|
print("Converting point3d.bin to .ply, will happen only the first time you open the scene.") |
|
try: |
|
xyz, rgb, _ = read_points3D_binary(bin_path) |
|
except: |
|
xyz, rgb, _ = read_points3D_text(txt_path) |
|
storePly(ply_path, xyz, rgb) |
|
try: |
|
pcd = fetchPly(ply_path) |
|
except: |
|
pcd = None |
|
|
|
scene_info = SceneInfo(point_cloud=pcd, |
|
train_cameras=train_cam_infos, |
|
test_cameras=test_cam_infos, |
|
nerf_normalization=nerf_normalization, |
|
ply_path=ply_path, |
|
is_nerf_synthetic=False) |
|
return scene_info |
|
|
|
def readCamerasFromTransforms(path, transformsfile, depths_folder, white_background, is_test, extension=".png"): |
|
cam_infos = [] |
|
|
|
with open(os.path.join(path, transformsfile)) as json_file: |
|
contents = json.load(json_file) |
|
fovx = contents["camera_angle_x"] |
|
|
|
frames = contents["frames"] |
|
for idx, frame in enumerate(frames): |
|
cam_name = os.path.join(path, frame["file_path"] + extension) |
|
|
|
|
|
c2w = np.array(frame["transform_matrix"]) |
|
|
|
c2w[:3, 1:3] *= -1 |
|
|
|
|
|
w2c = np.linalg.inv(c2w) |
|
R = np.transpose(w2c[:3,:3]) |
|
T = w2c[:3, 3] |
|
|
|
image_path = os.path.join(path, cam_name) |
|
image_name = Path(cam_name).stem |
|
image = Image.open(image_path) |
|
|
|
im_data = np.array(image.convert("RGBA")) |
|
|
|
bg = np.array([1,1,1]) if white_background else np.array([0, 0, 0]) |
|
|
|
norm_data = im_data / 255.0 |
|
arr = norm_data[:,:,:3] * norm_data[:, :, 3:4] + bg * (1 - norm_data[:, :, 3:4]) |
|
image = Image.fromarray(np.array(arr*255.0, dtype=np.byte), "RGB") |
|
|
|
fovy = focal2fov(fov2focal(fovx, image.size[0]), image.size[1]) |
|
FovY = fovy |
|
FovX = fovx |
|
|
|
depth_path = os.path.join(depths_folder, f"{image_name}.png") if depths_folder != "" else "" |
|
|
|
cam_infos.append(CameraInfo(uid=idx, R=R, T=T, FovY=FovY, FovX=FovX, |
|
image_path=image_path, image_name=image_name, |
|
width=image.size[0], height=image.size[1], depth_path=depth_path, depth_params=None, is_test=is_test)) |
|
|
|
return cam_infos |
|
|
|
def readNerfSyntheticInfo(path, white_background, depths, eval, extension=".png"): |
|
|
|
depths_folder=os.path.join(path, depths) if depths != "" else "" |
|
print("Reading Training Transforms") |
|
train_cam_infos = readCamerasFromTransforms(path, "transforms_train.json", depths_folder, white_background, False, extension) |
|
print("Reading Test Transforms") |
|
test_cam_infos = readCamerasFromTransforms(path, "transforms_test.json", depths_folder, white_background, True, extension) |
|
|
|
if not eval: |
|
train_cam_infos.extend(test_cam_infos) |
|
test_cam_infos = [] |
|
|
|
nerf_normalization = getNerfppNorm(train_cam_infos) |
|
|
|
ply_path = os.path.join(path, "points3d.ply") |
|
if not os.path.exists(ply_path): |
|
|
|
num_pts = 100_000 |
|
print(f"Generating random point cloud ({num_pts})...") |
|
|
|
|
|
xyz = np.random.random((num_pts, 3)) * 2.6 - 1.3 |
|
shs = np.random.random((num_pts, 3)) / 255.0 |
|
pcd = BasicPointCloud(points=xyz, colors=SH2RGB(shs), normals=np.zeros((num_pts, 3))) |
|
|
|
storePly(ply_path, xyz, SH2RGB(shs) * 255) |
|
try: |
|
pcd = fetchPly(ply_path) |
|
except: |
|
pcd = None |
|
|
|
scene_info = SceneInfo(point_cloud=pcd, |
|
train_cameras=train_cam_infos, |
|
test_cameras=test_cam_infos, |
|
nerf_normalization=nerf_normalization, |
|
ply_path=ply_path, |
|
is_nerf_synthetic=True) |
|
return scene_info |
|
|
|
sceneLoadTypeCallbacks = { |
|
"Colmap": readColmapSceneInfo, |
|
"Blender" : readNerfSyntheticInfo |
|
} |