|
from PIL import Image |
|
import torch |
|
import torch.nn.functional as F |
|
import numpy as np |
|
from romatch.utils.utils import tensor_to_pil |
|
|
|
from romatch import roma_outdoor |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
if torch.backends.mps.is_available(): |
|
device = torch.device('mps') |
|
|
|
if __name__ == "__main__": |
|
from argparse import ArgumentParser |
|
parser = ArgumentParser() |
|
parser.add_argument("--im_A_path", default="assets/toronto_A.jpg", type=str) |
|
parser.add_argument("--im_B_path", default="assets/toronto_B.jpg", type=str) |
|
parser.add_argument("--save_path", default="demo/gif/roma_warp_toronto", type=str) |
|
|
|
args, _ = parser.parse_known_args() |
|
im1_path = args.im_A_path |
|
im2_path = args.im_B_path |
|
save_path = args.save_path |
|
|
|
|
|
roma_model = roma_outdoor(device=device, coarse_res=560, upsample_res=(864, 1152)) |
|
roma_model.symmetric = False |
|
|
|
H, W = roma_model.get_output_resolution() |
|
|
|
im1 = Image.open(im1_path).resize((W, H)) |
|
im2 = Image.open(im2_path).resize((W, H)) |
|
|
|
|
|
warp, certainty = roma_model.match(im1_path, im2_path, device=device) |
|
|
|
x1 = (torch.tensor(np.array(im1)) / 255).to(device).permute(2, 0, 1) |
|
x2 = (torch.tensor(np.array(im2)) / 255).to(device).permute(2, 0, 1) |
|
|
|
coords_A, coords_B = warp[...,:2], warp[...,2:] |
|
for i, x in enumerate(np.linspace(0,2*np.pi,200)): |
|
t = (1 + np.cos(x))/2 |
|
interp_warp = (1-t)*coords_A + t*coords_B |
|
im2_transfer_rgb = F.grid_sample( |
|
x2[None], interp_warp[None], mode="bilinear", align_corners=False |
|
)[0] |
|
tensor_to_pil(im2_transfer_rgb, unnormalize=False).save(f"{save_path}_{i:03d}.jpg") |