Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# app.py
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from classifier import classify_toxic_comment
|
| 4 |
+
|
| 5 |
+
# Clear function for resetting the UI
|
| 6 |
+
def clear_inputs():
|
| 7 |
+
return "", 0, "", [], "", "", "", "", 0, "", "", "", "", "", "", "", ""
|
| 8 |
+
|
| 9 |
+
# Custom CSS for styling
|
| 10 |
+
custom_css = """
|
| 11 |
+
/* General Styling */
|
| 12 |
+
body {
|
| 13 |
+
font-family: 'Roboto', sans-serif;
|
| 14 |
+
background-color: #F5F7FA;
|
| 15 |
+
color: #333333;
|
| 16 |
+
}
|
| 17 |
+
|
| 18 |
+
/* Header Styling */
|
| 19 |
+
h1 {
|
| 20 |
+
color: #FFFFFF !important;
|
| 21 |
+
background-color: #1E88E5;
|
| 22 |
+
padding: 20px;
|
| 23 |
+
border-radius: 10px;
|
| 24 |
+
text-align: center;
|
| 25 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
|
| 26 |
+
margin-bottom: 20px;
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
/* Section Headers */
|
| 30 |
+
h3 {
|
| 31 |
+
color: #1E88E5;
|
| 32 |
+
font-weight: 600;
|
| 33 |
+
margin-bottom: 15px;
|
| 34 |
+
border-bottom: 2px solid #1E88E5;
|
| 35 |
+
padding-bottom: 5px;
|
| 36 |
+
}
|
| 37 |
+
|
| 38 |
+
/* Input Textbox */
|
| 39 |
+
.gr-textbox textarea {
|
| 40 |
+
border: 2px solid #1E88E5 !important;
|
| 41 |
+
border-radius: 10px !important;
|
| 42 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 43 |
+
transition: border-color 0.3s, box-shadow 0.3s;
|
| 44 |
+
}
|
| 45 |
+
.gr-textbox textarea:focus {
|
| 46 |
+
border-color: #1565C0 !important;
|
| 47 |
+
box-shadow: 0 4px 8px rgba(0, 0, 0, 0.15) !important;
|
| 48 |
+
}
|
| 49 |
+
|
| 50 |
+
/* Buttons */
|
| 51 |
+
.gr-button-primary {
|
| 52 |
+
background-color: #1E88E5 !important;
|
| 53 |
+
color: white !important;
|
| 54 |
+
border-radius: 10px !important;
|
| 55 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 56 |
+
transition: background-color 0.3s, transform 0.1s;
|
| 57 |
+
font-weight: 500;
|
| 58 |
+
}
|
| 59 |
+
.gr-button-primary:hover {
|
| 60 |
+
background-color: #1565C0 !important;
|
| 61 |
+
transform: translateY(-2px);
|
| 62 |
+
}
|
| 63 |
+
.gr-button-secondary {
|
| 64 |
+
background-color: #D32F2F !important;
|
| 65 |
+
color: white !important;
|
| 66 |
+
border-radius: 10px !important;
|
| 67 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.1);
|
| 68 |
+
transition: background-color 0.3s, transform 0.1s;
|
| 69 |
+
font-weight: 500;
|
| 70 |
+
}
|
| 71 |
+
.gr-button-secondary:hover {
|
| 72 |
+
background-color: #B71C1C !important;
|
| 73 |
+
transform: translateY(-2px);
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
/* Sliders */
|
| 77 |
+
.gr-slider {
|
| 78 |
+
background-color: #E0E0E0 !important;
|
| 79 |
+
border-radius: 10px !important;
|
| 80 |
+
box-shadow: inset 0 1px 3px rgba(0, 0, 0, 0.1);
|
| 81 |
+
}
|
| 82 |
+
|
| 83 |
+
/* Output Boxes */
|
| 84 |
+
.gr-textbox {
|
| 85 |
+
border: 1px solid #E0E0E0 !important;
|
| 86 |
+
border-radius: 10px !important;
|
| 87 |
+
background-color: #FFFFFF !important;
|
| 88 |
+
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
|
| 89 |
+
padding: 10px;
|
| 90 |
+
margin-bottom: 10px;
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
/* Accordion */
|
| 94 |
+
.gr-accordion {
|
| 95 |
+
border: 1px solid #E0E0E0 !important;
|
| 96 |
+
border-radius: 10px !important;
|
| 97 |
+
background-color: #FFFFFF !important;
|
| 98 |
+
margin-bottom: 15px;
|
| 99 |
+
}
|
| 100 |
+
|
| 101 |
+
/* Custom Classes for Visual Indicators */
|
| 102 |
+
.toxic-indicator::before {
|
| 103 |
+
content: "⚠️ ";
|
| 104 |
+
color: #D32F2F;
|
| 105 |
+
font-size: 20px;
|
| 106 |
+
}
|
| 107 |
+
.nontoxic-indicator::before {
|
| 108 |
+
content: "✅ ";
|
| 109 |
+
color: #388E3C;
|
| 110 |
+
font-size: 20px;
|
| 111 |
+
}
|
| 112 |
+
|
| 113 |
+
/* Loading State Animation */
|
| 114 |
+
@keyframes pulse {
|
| 115 |
+
0% { opacity: 1; }
|
| 116 |
+
50% { opacity: 0.5; }
|
| 117 |
+
100% { opacity: 1; }
|
| 118 |
+
}
|
| 119 |
+
.loading {
|
| 120 |
+
animation: pulse 1.5s infinite;
|
| 121 |
+
}
|
| 122 |
+
"""
|
| 123 |
+
|
| 124 |
+
# Main UI function
|
| 125 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=custom_css) as demo:
|
| 126 |
+
# Header Section
|
| 127 |
+
gr.Markdown(
|
| 128 |
+
"""
|
| 129 |
+
# Toxic Comment Classifier
|
| 130 |
+
Enter a comment below to check if it's toxic or non-toxic. This app uses a fine-tuned XLM-RoBERTa model to classify comments, paraphrases toxic comments, and evaluates the output with advanced metrics.
|
| 131 |
+
"""
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
# Input Section
|
| 135 |
+
with gr.Row():
|
| 136 |
+
with gr.Column(scale=4, min_width=600):
|
| 137 |
+
comment_input = gr.Textbox(
|
| 138 |
+
label="Your Comment",
|
| 139 |
+
placeholder="Type your comment here...",
|
| 140 |
+
lines=3,
|
| 141 |
+
max_lines=5
|
| 142 |
+
)
|
| 143 |
+
with gr.Column(scale=1, min_width=200):
|
| 144 |
+
submit_btn = gr.Button("Classify Comment", variant="primary")
|
| 145 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
| 146 |
+
|
| 147 |
+
gr.Examples(
|
| 148 |
+
examples=[
|
| 149 |
+
"I love this community, it's so supportive!",
|
| 150 |
+
"You are an idiot and should leave this platform.",
|
| 151 |
+
"This app is amazing, great work!"
|
| 152 |
+
],
|
| 153 |
+
inputs=comment_input,
|
| 154 |
+
label="Try these examples:"
|
| 155 |
+
)
|
| 156 |
+
|
| 157 |
+
# Output Section
|
| 158 |
+
with gr.Row():
|
| 159 |
+
# Left Column: Original Comment Metrics
|
| 160 |
+
with gr.Column(scale=1, min_width=400):
|
| 161 |
+
gr.Markdown("### Original Comment Analysis")
|
| 162 |
+
prediction_output = gr.Textbox(label="Prediction", placeholder="Prediction will appear here...")
|
| 163 |
+
label_display = gr.HTML()
|
| 164 |
+
confidence_output = gr.Slider(
|
| 165 |
+
label="Confidence",
|
| 166 |
+
minimum=0,
|
| 167 |
+
maximum=1,
|
| 168 |
+
value=0,
|
| 169 |
+
interactive=False
|
| 170 |
+
)
|
| 171 |
+
toxicity_output = gr.Textbox(label="Toxicity Score", placeholder="Toxicity score will appear here...")
|
| 172 |
+
bias_output = gr.Textbox(label="Bias Score", placeholder="Bias score will appear here...")
|
| 173 |
+
threshold_display = gr.HTML()
|
| 174 |
+
|
| 175 |
+
# Right Column: Paraphrased Output (if Toxic)
|
| 176 |
+
with gr.Column(scale=1, min_width=400):
|
| 177 |
+
with gr.Accordion("Paraphrased Output (if Toxic)", open=False):
|
| 178 |
+
paraphrased_comment_output = gr.Textbox(label="Paraphrased Comment", placeholder="Paraphrased comment will appear here if the input is toxic...")
|
| 179 |
+
paraphrased_prediction_output = gr.Textbox(label="Paraphrased Prediction", placeholder="Prediction will appear here...")
|
| 180 |
+
paraphrased_label_display = gr.HTML()
|
| 181 |
+
paraphrased_confidence_output = gr.Slider(
|
| 182 |
+
label="Paraphrased Confidence",
|
| 183 |
+
minimum=0,
|
| 184 |
+
maximum=1,
|
| 185 |
+
value=0,
|
| 186 |
+
interactive=False
|
| 187 |
+
)
|
| 188 |
+
paraphrased_toxicity_output = gr.Textbox(label="Paraphrased Toxicity Score", placeholder="Toxicity score will appear here...")
|
| 189 |
+
paraphrased_bias_output = gr.Textbox(label="Paraphrased Bias Score", placeholder="Bias score will appear here...")
|
| 190 |
+
semantic_similarity_output = gr.Textbox(label="Semantic Similarity", placeholder="Semantic similarity score will appear here...")
|
| 191 |
+
emotion_shift_output = gr.Textbox(label="Emotion Shift", placeholder="Emotion shift will appear here...")
|
| 192 |
+
empathy_score_output = gr.Textbox(label="Empathy Score", placeholder="Empathy score will appear here...")
|
| 193 |
+
bleu_score_output = gr.Textbox(label="BLEU Score", placeholder="BLEU score will appear here...")
|
| 194 |
+
rouge_scores_output = gr.Textbox(label="ROUGE Scores", placeholder="ROUGE scores will appear here...")
|
| 195 |
+
entailment_score_output = gr.Textbox(label="Entailment Score (Factual Consistency)", placeholder="Entailment score will appear here...")
|
| 196 |
+
|
| 197 |
+
# History and Feedback Sections
|
| 198 |
+
with gr.Row():
|
| 199 |
+
with gr.Column(scale=1):
|
| 200 |
+
with gr.Accordion("Prediction History", open=False):
|
| 201 |
+
history_output = gr.JSON(label="Previous Predictions")
|
| 202 |
+
|
| 203 |
+
with gr.Column(scale=1):
|
| 204 |
+
with gr.Accordion("Provide Feedback", open=False):
|
| 205 |
+
feedback_input = gr.Radio(
|
| 206 |
+
choices=["Yes, the prediction was correct", "No, the prediction was incorrect"],
|
| 207 |
+
label="Was this prediction correct?"
|
| 208 |
+
)
|
| 209 |
+
feedback_comment = gr.Textbox(label="Additional Comments (optional)", placeholder="Let us know your thoughts...")
|
| 210 |
+
feedback_submit = gr.Button("Submit Feedback")
|
| 211 |
+
feedback_output = gr.Textbox(label="Feedback Status")
|
| 212 |
+
|
| 213 |
+
def handle_classification(comment, history):
|
| 214 |
+
if history is None:
|
| 215 |
+
history = []
|
| 216 |
+
(
|
| 217 |
+
prediction, confidence, color, toxicity_score, bias_score,
|
| 218 |
+
paraphrased_comment, paraphrased_prediction, paraphrased_confidence,
|
| 219 |
+
paraphrased_color, paraphrased_toxicity_score, paraphrased_bias_score,
|
| 220 |
+
semantic_similarity, emotion_shift, empathy_score,
|
| 221 |
+
bleu_score, rouge_scores, entailment_score
|
| 222 |
+
) = classify_toxic_comment(comment)
|
| 223 |
+
|
| 224 |
+
history.append({
|
| 225 |
+
"comment": comment,
|
| 226 |
+
"prediction": prediction,
|
| 227 |
+
"confidence": confidence,
|
| 228 |
+
"toxicity_score": toxicity_score,
|
| 229 |
+
"bias_score": bias_score,
|
| 230 |
+
"paraphrased_comment": paraphrased_comment,
|
| 231 |
+
"paraphrased_prediction": paraphrased_prediction,
|
| 232 |
+
"paraphrased_confidence": paraphrased_confidence,
|
| 233 |
+
"paraphrased_toxicity_score": paraphrased_toxicity_score,
|
| 234 |
+
"paraphrased_bias_score": paraphrased_bias_score,
|
| 235 |
+
"semantic_similarity": semantic_similarity,
|
| 236 |
+
"emotion_shift": emotion_shift,
|
| 237 |
+
"empathy_score": empathy_score,
|
| 238 |
+
"bleu_score": bleu_score,
|
| 239 |
+
"rouge_scores": rouge_scores,
|
| 240 |
+
"entailment_score": entailment_score
|
| 241 |
+
})
|
| 242 |
+
|
| 243 |
+
threshold_message = "High Confidence" if confidence >= 0.7 else "Low Confidence"
|
| 244 |
+
threshold_color = "green" if confidence >= 0.7 else "orange"
|
| 245 |
+
toxicity_display = f"{toxicity_score} (Scale: 0 to 1, lower is less toxic)" if toxicity_score is not None else "N/A"
|
| 246 |
+
bias_display = f"{bias_score} (Scale: 0 to 1, lower indicates less bias)" if bias_score is not None else "N/A"
|
| 247 |
+
|
| 248 |
+
paraphrased_comment_display = paraphrased_comment if paraphrased_comment else "N/A (Comment was non-toxic)"
|
| 249 |
+
paraphrased_prediction_display = paraphrased_prediction if paraphrased_prediction else "N/A"
|
| 250 |
+
paraphrased_confidence_display = paraphrased_confidence if paraphrased_confidence else 0
|
| 251 |
+
paraphrased_toxicity_display = f"{paraphrased_toxicity_score} (Scale: 0 to 1, lower is less toxic)" if paraphrased_toxicity_score is not None else "N/A"
|
| 252 |
+
paraphrased_bias_display = f"{paraphrased_bias_score} (Scale: 0 to 1, lower indicates less bias)" if paraphrased_bias_score is not None else "N/A"
|
| 253 |
+
paraphrased_label_html = (
|
| 254 |
+
f"<span class='{'toxic-indicator' if 'Toxic' in paraphrased_prediction else 'nontoxic-indicator'}' "
|
| 255 |
+
f"style='color: {paraphrased_color}; font-size: 20px; font-weight: bold;'>{paraphrased_prediction}</span>"
|
| 256 |
+
if paraphrased_prediction else ""
|
| 257 |
+
)
|
| 258 |
+
semantic_similarity_display = f"{semantic_similarity} (Scale: 0 to 1, higher is better)" if semantic_similarity is not None else "N/A"
|
| 259 |
+
emotion_shift_display = emotion_shift if emotion_shift else "N/A"
|
| 260 |
+
empathy_score_display = f"{empathy_score} (Scale: 0 to 1, higher indicates more empathy)" if empathy_score is not None else "N/A"
|
| 261 |
+
bleu_score_display = f"{bleu_score} (Scale: 0 to 1, higher is better)" if bleu_score is not None else "N/A"
|
| 262 |
+
rouge_scores_display = (
|
| 263 |
+
f"ROUGE-1: {rouge_scores['rouge1']}, ROUGE-2: {rouge_scores['rouge2']}, ROUGE-L: {rouge_scores['rougeL']}"
|
| 264 |
+
if rouge_scores else "N/A"
|
| 265 |
+
)
|
| 266 |
+
entailment_score_display = f"{entailment_score} (Scale: 0 to 1, higher indicates better consistency)" if entailment_score is not None else "N/A"
|
| 267 |
+
|
| 268 |
+
# Add visual indicator to the prediction
|
| 269 |
+
prediction_class = "toxic-indicator" if "Toxic" in prediction else "nontoxic-indicator"
|
| 270 |
+
prediction_html = f"<span class='{prediction_class}' style='color: {color}; font-size: 20px; font-weight: bold;'>{prediction}</span>"
|
| 271 |
+
|
| 272 |
+
return (
|
| 273 |
+
prediction, confidence, prediction_html, history, threshold_message, threshold_color,
|
| 274 |
+
toxicity_display, bias_display,
|
| 275 |
+
paraphrased_comment_display, paraphrased_prediction_display, paraphrased_confidence_display,
|
| 276 |
+
paraphrased_toxicity_display, paraphrased_bias_display, paraphrased_label_html,
|
| 277 |
+
semantic_similarity_display, emotion_shift_display, empathy_score_display,
|
| 278 |
+
bleu_score_display, rouge_scores_display, entailment_score_display
|
| 279 |
+
)
|
| 280 |
+
|
| 281 |
+
def handle_feedback(feedback, comment):
|
| 282 |
+
return f"Thank you for your feedback: {feedback}\nAdditional comment: {comment}"
|
| 283 |
+
|
| 284 |
+
submit_btn.click(
|
| 285 |
+
fn=lambda: (
|
| 286 |
+
"Classifying... <span class='loading'>⏳</span>", 0, "", None, "", "",
|
| 287 |
+
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
|
| 288 |
+
"Paraphrasing... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", 0,
|
| 289 |
+
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>", "",
|
| 290 |
+
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
|
| 291 |
+
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>",
|
| 292 |
+
"Calculating... <span class='loading'>⏳</span>", "Calculating... <span class='loading'>⏳</span>"
|
| 293 |
+
), # Show loading state with animation
|
| 294 |
+
inputs=[],
|
| 295 |
+
outputs=[
|
| 296 |
+
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
|
| 297 |
+
toxicity_output, bias_output,
|
| 298 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 299 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 300 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output,
|
| 301 |
+
bleu_score_output, rouge_scores_output, entailment_score_output
|
| 302 |
+
]
|
| 303 |
+
).then(
|
| 304 |
+
fn=handle_classification,
|
| 305 |
+
inputs=[comment_input, history_output],
|
| 306 |
+
outputs=[
|
| 307 |
+
prediction_output, confidence_output, label_display, history_output, threshold_display, threshold_display,
|
| 308 |
+
toxicity_output, bias_output,
|
| 309 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 310 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 311 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output,
|
| 312 |
+
bleu_score_output, rouge_scores_output, entailment_score_output
|
| 313 |
+
]
|
| 314 |
+
).then(
|
| 315 |
+
fn=lambda prediction, confidence, html: html,
|
| 316 |
+
inputs=[prediction_output, confidence_output, label_display],
|
| 317 |
+
outputs=label_display
|
| 318 |
+
).then(
|
| 319 |
+
fn=lambda threshold_message, threshold_color: f"<span style='color: {threshold_color}; font-size: 16px;'>{threshold_message}</span>",
|
| 320 |
+
inputs=[threshold_display, threshold_display],
|
| 321 |
+
outputs=threshold_display
|
| 322 |
+
)
|
| 323 |
+
|
| 324 |
+
feedback_submit.click(
|
| 325 |
+
fn=handle_feedback,
|
| 326 |
+
inputs=[feedback_input, feedback_comment],
|
| 327 |
+
outputs=feedback_output
|
| 328 |
+
)
|
| 329 |
+
|
| 330 |
+
clear_btn.click(
|
| 331 |
+
fn=clear_inputs,
|
| 332 |
+
inputs=[],
|
| 333 |
+
outputs=[
|
| 334 |
+
comment_input, confidence_output, label_display, history_output, toxicity_output, bias_output,
|
| 335 |
+
paraphrased_comment_output, paraphrased_prediction_output, paraphrased_confidence_output,
|
| 336 |
+
paraphrased_toxicity_output, paraphrased_bias_output, paraphrased_label_display,
|
| 337 |
+
semantic_similarity_output, emotion_shift_output, empathy_score_output,
|
| 338 |
+
bleu_score_output, rouge_scores_output, entailment_score_output
|
| 339 |
+
]
|
| 340 |
+
)
|
| 341 |
+
|
| 342 |
+
gr.Markdown(
|
| 343 |
+
"""
|
| 344 |
+
---
|
| 345 |
+
**About**: This app is part of a four-stage pipeline for automated toxic comment moderation with emotional intelligence via RLHF. Built with ❤️ using Hugging Face and Gradio.
|
| 346 |
+
"""
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
demo.launch()
|