Create paraphraser.py
Browse files- paraphraser.py +33 -0
paraphraser.py
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# paraphraser.py
|
| 2 |
+
import torch
|
| 3 |
+
from model_loader import paraphrase_model, paraphrase_tokenizer
|
| 4 |
+
|
| 5 |
+
def paraphrase_comment(comment, prompt_template="Paraphrase the following comment to make it non-toxic while preserving its meaning: \"{comment}\""):
|
| 6 |
+
"""
|
| 7 |
+
Paraphrase a toxic comment using the Granite 3.2-2B-Instruct model.
|
| 8 |
+
Returns the paraphrased comment.
|
| 9 |
+
"""
|
| 10 |
+
# Format the prompt with the input comment
|
| 11 |
+
prompt = prompt_template.format(comment=comment)
|
| 12 |
+
|
| 13 |
+
# Tokenize the prompt
|
| 14 |
+
inputs = paraphrase_tokenizer(prompt, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 15 |
+
|
| 16 |
+
# Generate the paraphrased output
|
| 17 |
+
with torch.no_grad():
|
| 18 |
+
outputs = paraphrase_model.generate(
|
| 19 |
+
**inputs,
|
| 20 |
+
max_length=512,
|
| 21 |
+
num_return_sequences=1,
|
| 22 |
+
do_sample=True,
|
| 23 |
+
top_p=0.95,
|
| 24 |
+
temperature=0.7
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
# Decode the generated output
|
| 28 |
+
paraphrased_comment = paraphrase_tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 29 |
+
|
| 30 |
+
# Remove the prompt part from the output (if the model includes it)
|
| 31 |
+
paraphrased_comment = paraphrased_comment.replace(prompt, "").strip()
|
| 32 |
+
|
| 33 |
+
return paraphrased_comment
|