Janiator's picture
Create app.py
1df5447 verified
import gradio as gr
import numpy as np
from PIL import Image
from transformers import AutoProcessor, BlipForConditionalGeneration
# Load the pretrained processor and model
processor = AutoProcessor.from_pretrained("Salesforce/blip-image-captioning-base")
model = BlipForConditionalGeneration.from_pretrained("Salesforce/blip-image-captioning-base")
# Define the caption_image function that takes an input image and returns a caption
def caption_image(input_image: np.ndarray):
# Convert numpy array to PIL Image and convert to RGB
raw_image = Image.fromarray(input_image).convert('RGB')
# Process the image
inputs = processor(raw_image, return_tensors="pt")
# Generate a caption for the image
out = model.generate(**inputs, max_length=50)
# Decode the generated tokens to text
caption = processor.decode(out[0], skip_special_tokens=True)
return caption
# Gradio interface
iface = gr.Interface(
fn=caption_image,
inputs=gr.Image(),
outputs="text",
title="Image Captioning",
description="This is a web app for generating captions for images using a trained AI model."
)
# Launch the app with a public link
iface.launch(share=True)