Jan90 commited on
Commit
1490afc
·
verified ·
1 Parent(s): d4311c6

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +150 -50
app.py CHANGED
@@ -1,66 +1,166 @@
1
- # Load model directly
2
- from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForSequenceClassification, TextClassificationPipeline
3
- import torch
4
  import gradio as gr
5
- from openpyxl import load_workbook
6
- from numpy import mean
 
7
 
8
- tokenizer = AutoTokenizer.from_pretrained("suriya7/bart-finetuned-text-summarization")
9
- model = AutoModelForSeq2SeqLM.from_pretrained("suriya7/bart-finetuned-text-summarization")
 
 
 
 
 
 
 
 
 
10
 
11
- tokenizer_keywords = AutoTokenizer.from_pretrained("transformer3/H2-keywordextractor")
12
- model_keywords = AutoModelForSeq2SeqLM.from_pretrained("transformer3/H2-keywordextractor")
 
 
 
 
13
 
14
- device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15
- # Load the fine-tuned model and tokenizer
16
- new_model = AutoModelForSequenceClassification.from_pretrained('roberta-rating')
17
- new_tokenizer = AutoTokenizer.from_pretrained('roberta-rating')
18
 
 
 
 
 
 
 
 
 
 
19
 
20
- # Create a classification pipeline
21
- classifier = TextClassificationPipeline(model=new_model, tokenizer=new_tokenizer, device=device)
 
 
 
 
 
 
 
22
 
23
- # Add label mapping for sentiment analysis
24
- label_mapping = {1: '1/5', 2: '2/5', 3: '3/5', 4: '4/5', 5: '5/5'}
 
 
 
 
 
 
 
 
25
 
26
- def parse_xl(file_path):
27
- cells = []
 
 
 
 
 
 
 
 
 
 
 
 
28
 
29
- workbook = load_workbook(filename=file_path)
30
- for sheet in workbook.worksheets:
31
- for row in sheet.iter_rows():
32
- for cell in row:
33
- if cell.value != None:
34
- cells.append(cell.value)
 
 
 
 
 
 
35
 
36
- return cells
 
 
37
 
38
- def evaluate(file):
39
- reviews = parse_xl(file)
40
- ratings = []
41
- text = ""
 
 
42
 
43
- for review in reviews:
44
- ratings.append(int(classifier(review)[0]['label'].split('_')[1]))
45
- text += review
46
- text += " "
47
-
48
- inputs = tokenizer([text], max_length=1024, truncation=True, return_tensors="pt")
49
- summary_ids = model.generate(inputs["input_ids"], num_beams=2, min_length=50, max_length=1000)
50
- summary = tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
51
 
52
- inputs_keywords = tokenizer_keywords([text], max_length=1024, truncation=True, return_tensors="pt")
53
- summary_ids_keywords = model_keywords.generate(inputs_keywords["input_ids"], num_beams=2, min_length=0, max_length=100)
54
- keywords = tokenizer_keywords.batch_decode(summary_ids_keywords, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
 
 
 
 
55
 
56
- return round(mean(ratings), 2), summary, keywords
57
 
58
- iface = gr.Interface(
59
- fn=evaluate,
60
- inputs=gr.File(label="Reviews", file_types=[".xlsx", ".xlsm", ".xltx", ".xltm"]),
61
- outputs=[gr.Textbox(label="Rating"), gr.Textbox(label="Summary"), gr.Textbox(label="Keywords")],
62
- title='Summarize Reviews',
63
- description="Evaluate and summarize collection of reviews. Reviews are submitted as an Excel file, where each reviews is in its own cell."
64
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
- iface.launch(share=True)
 
 
 
 
1
  import gradio as gr
2
+ import pandas as pd
3
+ import numpy as np
4
+ import random
5
 
6
+ def show_stars():
7
+ """ Function that shows the HTML script for stars -Janika"""
8
+ stars_html = """
9
+ <style>
10
+ /* Title */
11
+ .title-text {
12
+ color: white;
13
+ font-family: sans-serif;
14
+ font-size: 14px;
15
+ font-weight: bold;
16
+ }
17
 
18
+ /* Empty stars */
19
+ .star-rating {
20
+ display: inline-block;
21
+ font-size: 1.5em;
22
+ color: lightgray;
23
+ }
24
 
25
+ /* Filled stars */
26
+ .star-rating .star.filled {
27
+ color: gold;
28
+ }
29
 
30
+ /* Box for the whole star rating component */
31
+ .rating-box {
32
+ border: 1px transparent;
33
+ background-color: #1f2937;
34
+ padding: 10px;
35
+ border-radius: 5px;
36
+ width: 100%;
37
+ margin-left: 0;
38
+ }
39
 
40
+ /* Box for the title */
41
+ .title-box {
42
+ border: 1px transparent;
43
+ background-color: #ca8a04;
44
+ padding: 3px;
45
+ border-radius: 8px;
46
+ display: inline-block;
47
+ margin-bottom: 6px;
48
+ }
49
 
50
+ /* Box for stars */
51
+ .star-box {
52
+ border: 1px transparent;
53
+ background-color: #374151;
54
+ padding: 10px;
55
+ border-radius: 5px;
56
+ width: fit-content;
57
+ margin: 0;
58
+ }
59
+ </style>
60
 
61
+ <div class="rating-box">
62
+ <div class="title-box">
63
+ <p class="title-text">Star rating</p>
64
+ </div>
65
+ <div class="star-box">
66
+ <div class="star-rating" data-rating="4">
67
+ <span class="star">★</span>
68
+ <span class="star">★</span>
69
+ <span class="star">★</span>
70
+ <span class="star">★</span>
71
+ <span class="star">★</span>
72
+ </div>
73
+ </div>
74
+ </div>
75
 
76
+ <script>
77
+ document.addEventListener('DOMContentLoaded', function() {
78
+ const ratingElement = document.querySelector('.star-rating');
79
+ const rating = parseInt(ratingElement.getAttribute('data-rating'));
80
+ const stars = ratingElement.querySelectorAll('.star');
81
+ for (let i = 0; i < rating; i++) {
82
+ stars[i].classList.add('filled');
83
+ }
84
+ });
85
+ </script>
86
+ """
87
+ return stars_html
88
 
89
+ # Function to handle feedback submission -Piitu
90
+ def handle_feedback(feedback, name):
91
+ return f"Thank you for your feedback, {name}!"
92
 
93
+ # Function to update placeholder text -Piitu
94
+ def update_placeholder(name):
95
+ if name:
96
+ return f"Enter your feedback here, {name}..."
97
+ else:
98
+ return "Enter your feedback here..."
99
 
100
+ # Random data for testing, actual data added later
101
+ df = pd.DataFrame({
102
+ 'Year': np.random.randint(2000, 2024, 25),
103
+ 'Reviews': np.random.randint(120, 320, 25),
104
+ })
 
 
 
105
 
106
+ # Theme
107
+ theme = gr.themes.Soft(
108
+ primary_hue="yellow",
109
+ secondary_hue="amber",
110
+ spacing_size="sm",
111
+ radius_size="lg",
112
+ )
113
 
114
+ with gr.Blocks(theme=theme) as demo:
115
 
116
+ # Basic user interface for company's view -Janika
117
+ with gr.Tab("User Interface"):
118
+ with gr.Row():
119
+ with gr.Column(scale=2, min_width=300):
120
+ # Overall summary from all feedback
121
+ com_summary_output = gr.Textbox(label="Summary")
122
+
123
+ with gr.Column(scale=1, min_width=300):
124
+ # Average star rating across all feedback
125
+ com_star_rating = gr.HTML(value=show_stars())
126
+
127
+ # The most common keywords across all feedback
128
+ com_keywords_output = gr.Textbox(label="Keywords")
129
+
130
+
131
+ # Testing Area -Piitu
132
+ with gr.Tab("Testing Area"):
133
+ with gr.Row():
134
+ with gr.Column(scale=1, min_width=300):
135
+ name_input = gr.Textbox(label="Enter your name", placeholder="Enter your name here...")
136
+
137
+ text_input = gr.Textbox(label="Please give us feedback!",
138
+ placeholder="Enter your feedback here...",
139
+ max_length=5000)
140
+
141
+ # Update placeholder based on name input -Piitu
142
+ name_input.change(fn=update_placeholder, inputs=name_input, outputs=text_input)
143
+
144
+ # Send button -Piitu
145
+ send_button = gr.Button("Send")
146
+
147
+ # Output for feedback submission confirmation -Piitu
148
+ feedback_output = gr.Textbox(label="Submission Result", interactive=False)
149
+
150
+ # Link button to function that handles feedback submission -Piitu
151
+ send_button.click(handle_feedback, inputs=[text_input, name_input], outputs=feedback_output)
152
+
153
+ with gr.Column(scale=2, min_width=300):
154
+ # Estimated star rating from customer's feedback -Janika
155
+ cus_star_rating = gr.HTML(value=show_stars())
156
+
157
+ # Estimated sentiment from customer's feedback -Janika
158
+ cus_sentiment = gr.Textbox(label="Sentiment")
159
+
160
+ # Summary from customer's feedback -Janika
161
+ cus_summary_output = gr.Textbox(label="Summary")
162
+
163
+ # The most common keywords from customer's feedback -Janika
164
+ cus_keywords_output = gr.Textbox(label="Keywords")
165
 
166
+ demo.launch()