|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import pandas as pd |
|
from sklearn.model_selection import train_test_split |
|
from sklearn.linear_model import LinearRegression |
|
from sklearn.metrics import r2_score,mean_squared_error |
|
from sklearn.pipeline import Pipeline |
|
from sklearn.compose import ColumnTransformer |
|
from sklearn.preprocessing import StandardScaler,OneHotEncoder |
|
|
|
|
|
|
|
|
|
df=pd.read_excel('cars.xls') |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
X=df.drop('Price',axis=1) |
|
y=df[['Price']] |
|
|
|
|
|
|
|
X_train,X_test,y_train,y_test=train_test_split(X,y, |
|
test_size=0.2, |
|
random_state=42) |
|
|
|
|
|
|
|
|
|
preproccer=ColumnTransformer(transformers=[('num',StandardScaler(), |
|
['Mileage','Cylinder','Liter','Doors']), |
|
('cat',OneHotEncoder(),['Make','Model','Trim','Type'])]) |
|
|
|
|
|
|
|
|
|
model=LinearRegression() |
|
pipe=Pipeline(steps=[('preprocessor',preproccer), |
|
('model',model)]) |
|
pipe.fit(X_train,y_train) |
|
y_pred=pipe.predict(X_test) |
|
mean_squared_error(y_test,y_pred)**0.5,r2_score(y_test,y_pred) |
|
|
|
import streamlit as st |
|
def price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather): |
|
input_data=pd.DataFrame({ |
|
'Make':[make], |
|
'Model':[model], |
|
'Trim':[trim], |
|
'Mileage':[mileage], |
|
'Type':[car_type], |
|
'Car_type':[car_type], |
|
'Cylinder':[cylinder], |
|
'Liter':[liter], |
|
'Doors':[doors], |
|
'Cruise':[cruise], |
|
'Sound':[sound], |
|
'Leather':[leather] |
|
}) |
|
prediction=pipe.predict(input_data)[0] |
|
return prediction |
|
st.title("Used Car Price Estimation :red_car: by JamesWhiteCookJr90") |
|
st.write("Enter features of the car") |
|
make=st.selectbox("Make",df['Make'].unique()) |
|
model=st.selectbox("Model",df[df['Make']==make]['Model'].unique()) |
|
trim=st.selectbox("Trim",df[(df['Make']==make) & (df['Model']==model)]['Trim'].unique()) |
|
mileage=st.number_input("Mileage",200,60000) |
|
car_type=st.selectbox("Vehicle Type",df[(df['Make']==make) & (df['Model']==model) & (df['Trim']==trim )]['Type'].unique()) |
|
cylinder=st.selectbox("Cylinder",df['Cylinder'].unique()) |
|
liter=st.number_input("Engine Displacement",1,6) |
|
doors=st.selectbox("Number of Doors",df['Doors'].unique()) |
|
cruise=st.radio("Cruise Control",[True,False]) |
|
sound=st.radio("Audio System",[True,False]) |
|
leather=st.radio("Leather Seat",[True,False]) |
|
if st.button("Predict"): |
|
pred=price(make,model,trim,mileage,car_type,cylinder,liter,doors,cruise,sound,leather) |
|
|
|
st.write("11062024:Predicted Price :red_car: $",round(pred[0],2)) |
|
|
|
|
|
|
|
|
|
|