Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForSequenceClassification | |
from transformers import TFAutoModelForSequenceClassification | |
from transformers import AutoTokenizer, AutoConfig | |
import numpy as np | |
from scipy.special import softmax | |
# setting up the requiremnts | |
model_path = f"mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis" | |
tokenizer = AutoTokenizer.from_pretrained('mrm8488/distilroberta-finetuned-financial-news-sentiment-analysis') | |
config = AutoConfig.from_pretrained(model_path) | |
model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
# Preprocess text (username and link placeholders) | |
def preprocess(text): | |
new_text = [] | |
for t in text.split(" "): | |
t = '@user' if t.startswith('@') and len(t) > 1 else t | |
t = 'http' if t.startswith('http') else t | |
new_text.append(t) | |
return " ".join(new_text) | |
# Defining the main function | |
def sentiment_analysis(text): | |
text = preprocess(text) | |
# PyTorch-based models | |
encoded_input = tokenizer(text, return_tensors='pt') | |
output = model(**encoded_input) | |
scores_ = output[0][0].detach().numpy() | |
scores_ = softmax(scores_) | |
# Format output dict of scores | |
labels = ['Negative😢😢', 'Neutral', 'Positive😃😃'] | |
scores = {l:float(s) for (l,s) in zip(labels, scores_) } | |
return scores | |
welcome_message = "Welcome to Team Paris tweets first shot Sentimental Analysis App 😃 😃 😃 😃 " | |
demo = gr.Interface( | |
fn=sentiment_analysis, | |
inputs=gr.Textbox(placeholder="Write your tweet here..."), | |
outputs="label", | |
interpretation="default", | |
examples=[["This is wonderful!"]], | |
title=welcome_message, | |
description=("This is a sentimental analysis app built by fine tuning a model trained on financial news sentiment, we leverage what the model has learnt, /n, and fine tune it on twitter comments . The eval_loss of our model is 0.785") | |
) | |
demo.launch() | |
# def greet(name): | |
# return "Hello " + name + "!!" | |
# iface = gr.Interface(fn=greet, inputs="text", outputs="text") | |
# iface.launch(inline = False) |