Spaces:
Sleeping
Sleeping
from fastapi import FastAPI | |
from txtai.embeddings import Embeddings | |
from txtai.pipeline import Extractor | |
import os | |
from langchain import HuggingFaceHub | |
from langchain.prompts import PromptTemplate | |
from langchain.chains import LLMChain | |
# from transformers import pipeline | |
# NOTE - we configure docs_url to serve the interactive Docs at the root path | |
# of the app. This way, we can use the docs as a landing page for the app on Spaces. | |
app = FastAPI(docs_url="/") | |
# @app.get("/generate") | |
# def generate(text: str): | |
# """ | |
# Using the text2text-generation pipeline from `transformers`, generate text | |
# from the given input text. The model used is `google/flan-t5-small`, which | |
# can be found [here](https://huggingface.co/google/flan-t5-small). | |
# """ | |
# output = pipe(text) | |
# return {"output": output[0]["generated_text"]} | |
def _check_if_db_exists(db_path: str) -> bool: | |
return os.path.exists(db_path) | |
def _load_embeddings_from_db( | |
db_present: bool, | |
domain: str, | |
path: str = "sentence-transformers/all-MiniLM-L6-v2", | |
): | |
# Create embeddings model with content support | |
embeddings = Embeddings({"path": path, "content": True}) | |
# if Vector DB is not present | |
if not db_present: | |
return embeddings | |
else: | |
if domain == "": | |
embeddings.load("index") # change this later | |
else: | |
print(3) | |
embeddings.load(f"index/{domain}") | |
return embeddings | |
def _prompt(question): | |
return f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered. | |
Question: {question} | |
Context: """ | |
def _search(query, extractor, question=None): | |
# Default question to query if empty | |
if not question: | |
question = query | |
# template = f"""Answer the following question using only the context below. Say 'no answer' when the question can't be answered. | |
# Question: {question} | |
# Context: """ | |
# prompt = PromptTemplate(template=template, input_variables=["question"]) | |
# llm_chain = LLMChain(prompt=prompt, llm=extractor) | |
# return {"question": question, "answer": llm_chain.run(question)} | |
return extractor([("answer", query, _prompt(question), False)])[0][1] | |
def rag(domain: str, question: str): | |
db_exists = _check_if_db_exists(db_path=f"{os.getcwd()}\index\{domain}\documents") | |
print(db_exists) | |
# if db_exists: | |
embeddings = _load_embeddings_from_db(db_exists, domain) | |
# Create extractor instance | |
extractor = Extractor(embeddings, "google/flan-t5-base") | |
# llm = HuggingFaceHub( | |
# repo_id="google/flan-t5-xxl", | |
# model_kwargs={"temperature": 1, "max_length": 1000000}, | |
# ) | |
# else: | |
answer = _search(question, extractor) | |
return {"question": question, "answer": answer} | |