Spaces:
Sleeping
Sleeping
limcheekin
commited on
Commit
•
b92d070
1
Parent(s):
990a127
feat: first import
Browse files- Dockerfile +44 -0
- README.md +11 -2
- download.sh +9 -0
- index.html +39 -0
- open/__init__.py +0 -0
- open/text/embeddings/server/__main__.py +37 -0
- open/text/embeddings/server/app.py +114 -0
- server-requirements.txt +5 -0
- start_server.sh +3 -0
Dockerfile
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM debian:bullseye-slim AS build-image
|
2 |
+
|
3 |
+
ARG MODEL="BAAI/bge-large-en"
|
4 |
+
ENV MODEL=${MODEL}
|
5 |
+
|
6 |
+
COPY ./download.sh ./
|
7 |
+
|
8 |
+
# Install build dependencies
|
9 |
+
RUN apt-get update && \
|
10 |
+
apt-get install -y git-lfs
|
11 |
+
|
12 |
+
RUN chmod +x *.sh && \
|
13 |
+
./download.sh && \
|
14 |
+
rm *.sh
|
15 |
+
|
16 |
+
# Stage 3 - final runtime image
|
17 |
+
# Grab a fresh copy of the Python image
|
18 |
+
FROM python:3.10-slim
|
19 |
+
|
20 |
+
ARG MODEL="BAAI/bge-large-en"
|
21 |
+
ENV MODEL=${MODEL}
|
22 |
+
ENV NORMALIZE_EMBEDDINGS=1
|
23 |
+
|
24 |
+
RUN mkdir -p ${MODEL} && mkdir -p open/text/embeddings
|
25 |
+
COPY --from=build-image ${MODEL} ${MODEL}
|
26 |
+
COPY open/text/embeddings ./open/text/embeddings
|
27 |
+
COPY server-requirements.txt ./
|
28 |
+
RUN pip install --no-cache-dir -r server-requirements.txt
|
29 |
+
|
30 |
+
COPY ./start_server.sh ./
|
31 |
+
COPY ./index.html ./
|
32 |
+
|
33 |
+
# Make the server start script executable
|
34 |
+
RUN chmod +x ./start_server.sh
|
35 |
+
|
36 |
+
# Set environment variable for the host
|
37 |
+
ENV HOST=0.0.0.0
|
38 |
+
ENV PORT=7860
|
39 |
+
|
40 |
+
# Expose a port for the server
|
41 |
+
EXPOSE ${PORT}
|
42 |
+
|
43 |
+
# Run the server start script
|
44 |
+
CMD ["/bin/sh", "./start_server.sh"]
|
README.md
CHANGED
@@ -1,10 +1,19 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 👁
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
sdk: docker
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
pinned: false
|
8 |
---
|
9 |
|
10 |
-
|
|
|
|
|
|
1 |
---
|
2 |
+
title: BAAI/bge-large-en OpenAI API-Compatible Endpoint
|
3 |
emoji: 👁
|
4 |
colorFrom: gray
|
5 |
colorTo: pink
|
6 |
sdk: docker
|
7 |
+
models:
|
8 |
+
- BAAI/bge-large-en
|
9 |
+
tags:
|
10 |
+
- inference api
|
11 |
+
- openai-api compatible
|
12 |
+
- open-text-embeddings
|
13 |
+
- bge-large-en
|
14 |
pinned: false
|
15 |
---
|
16 |
|
17 |
+
# BAAI/bge-large-en OpenAI API-Compatible Endpoint
|
18 |
+
|
19 |
+
Please refer to the [main screen](https://huggingface.co/spaces/limcheekin/bge-large-en) for more information.
|
download.sh
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
mkdir -p $MODEL
|
2 |
+
git lfs install --skip-smudge
|
3 |
+
git clone https://huggingface.co/$MODEL $MODEL
|
4 |
+
cd $MODEL
|
5 |
+
git lfs pull
|
6 |
+
git lfs install --force
|
7 |
+
rm -rf .git
|
8 |
+
pwd
|
9 |
+
ls -l
|
index.html
ADDED
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html>
|
3 |
+
<head>
|
4 |
+
<title>BAAI/bge-large-en OpenAI API-Compatible Endpoint</title>
|
5 |
+
</head>
|
6 |
+
<body>
|
7 |
+
<h1>BAAI/bge-large-en OpenAI API-Compatible Endpoint</h1>
|
8 |
+
<p>
|
9 |
+
With the utilization of the
|
10 |
+
<a href="https://github.com/limcheekin/open-text-embeddings"
|
11 |
+
>open-text-embeddings</a
|
12 |
+
>
|
13 |
+
package, we are excited to introduce the text embeddings model hosted in
|
14 |
+
the Hugging Face Docker Spaces, made accessible through an
|
15 |
+
OpenAI-compatible API. This space includes comprehensive API documentation
|
16 |
+
to facilitate seamless integration.
|
17 |
+
</p>
|
18 |
+
<ul>
|
19 |
+
<li>
|
20 |
+
The API endpoint:
|
21 |
+
<a href="https://limcheekin-bge-large-en.hf.space/v1"
|
22 |
+
>https://limcheekin-bge-large-en.hf.space/v1</a
|
23 |
+
>
|
24 |
+
</li>
|
25 |
+
<li>
|
26 |
+
The API doc:
|
27 |
+
<a href="https://limcheekin-bge-large-en.hf.space/docs"
|
28 |
+
>https://limcheekin-bge-large-en.hf.space/docs</a
|
29 |
+
>
|
30 |
+
</li>
|
31 |
+
</ul>
|
32 |
+
<p>
|
33 |
+
If you find this resource valuable, your support in the form of starring
|
34 |
+
the space would be greatly appreciated. Your engagement plays a vital role
|
35 |
+
in furthering the application for a community GPU grant, ultimately
|
36 |
+
enhancing the capabilities and accessibility of this space.
|
37 |
+
</p>
|
38 |
+
</body>
|
39 |
+
</html>
|
open/__init__.py
ADDED
File without changes
|
open/text/embeddings/server/__main__.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""FastAPI server for open-text-embeddings.
|
2 |
+
|
3 |
+
To run this example:
|
4 |
+
|
5 |
+
```bash
|
6 |
+
pip install -r --no-cache-dir server-requirements.txt
|
7 |
+
```
|
8 |
+
|
9 |
+
Then run:
|
10 |
+
```
|
11 |
+
MODEL=intfloat/e5-large-v2 python -m open.text.embeddings.server
|
12 |
+
```
|
13 |
+
|
14 |
+
Then visit http://localhost:8000/docs to see the interactive API docs.
|
15 |
+
|
16 |
+
"""
|
17 |
+
import uvicorn
|
18 |
+
from fastapi.responses import HTMLResponse
|
19 |
+
from open.text.embeddings.server.app import create_app
|
20 |
+
import os
|
21 |
+
|
22 |
+
app = create_app()
|
23 |
+
|
24 |
+
# Read the content of index.html once and store it in memory
|
25 |
+
with open("index.html", "r") as f:
|
26 |
+
content = f.read()
|
27 |
+
|
28 |
+
|
29 |
+
@app.get("/", response_class=HTMLResponse)
|
30 |
+
async def read_items():
|
31 |
+
return content
|
32 |
+
|
33 |
+
if __name__ == "__main__":
|
34 |
+
uvicorn.run(app,
|
35 |
+
host=os.environ["HOST"],
|
36 |
+
port=int(os.environ["PORT"])
|
37 |
+
)
|
open/text/embeddings/server/app.py
ADDED
@@ -0,0 +1,114 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from typing import List, Optional, Union
|
3 |
+
from starlette.concurrency import run_in_threadpool
|
4 |
+
from fastapi import FastAPI, APIRouter
|
5 |
+
from fastapi.middleware.cors import CORSMiddleware
|
6 |
+
from pydantic import BaseModel, Field
|
7 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
8 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
9 |
+
from langchain.embeddings import HuggingFaceBgeEmbeddings
|
10 |
+
import os
|
11 |
+
|
12 |
+
router = APIRouter()
|
13 |
+
|
14 |
+
DEFAULT_MODEL_NAME = "intfloat/e5-large-v2"
|
15 |
+
E5_EMBED_INSTRUCTION = "passage: "
|
16 |
+
E5_QUERY_INSTRUCTION = "query: "
|
17 |
+
BGE_EN_QUERY_INSTRUCTION = "Represent this sentence for searching relevant passages: "
|
18 |
+
BGE_ZH_QUERY_INSTRUCTION = "为这个句子生成表示以用于检索相关文章:"
|
19 |
+
|
20 |
+
|
21 |
+
def create_app():
|
22 |
+
app = FastAPI(
|
23 |
+
title="Open Text Embeddings API",
|
24 |
+
version="0.0.2",
|
25 |
+
)
|
26 |
+
app.add_middleware(
|
27 |
+
CORSMiddleware,
|
28 |
+
allow_origins=["*"],
|
29 |
+
allow_credentials=True,
|
30 |
+
allow_methods=["*"],
|
31 |
+
allow_headers=["*"],
|
32 |
+
)
|
33 |
+
app.include_router(router)
|
34 |
+
|
35 |
+
return app
|
36 |
+
|
37 |
+
|
38 |
+
class CreateEmbeddingRequest(BaseModel):
|
39 |
+
model: Optional[str] = Field(
|
40 |
+
description="The model to use for generating embeddings.")
|
41 |
+
input: Union[str, List[str]] = Field(description="The input to embed.")
|
42 |
+
user: Optional[str]
|
43 |
+
|
44 |
+
class Config:
|
45 |
+
schema_extra = {
|
46 |
+
"example": {
|
47 |
+
"input": "The food was delicious and the waiter...",
|
48 |
+
}
|
49 |
+
}
|
50 |
+
|
51 |
+
|
52 |
+
class Embedding(BaseModel):
|
53 |
+
embedding: List[float]
|
54 |
+
|
55 |
+
|
56 |
+
class CreateEmbeddingResponse(BaseModel):
|
57 |
+
data: List[Embedding]
|
58 |
+
|
59 |
+
|
60 |
+
embeddings = None
|
61 |
+
|
62 |
+
|
63 |
+
def _create_embedding(
|
64 |
+
request: CreateEmbeddingRequest
|
65 |
+
):
|
66 |
+
global embeddings
|
67 |
+
|
68 |
+
if embeddings is None:
|
69 |
+
if request.model and request.model != "text-embedding-ada-002":
|
70 |
+
model_name = request.model
|
71 |
+
else:
|
72 |
+
model_name = os.environ["MODEL"]
|
73 |
+
print("Loading model:", model_name)
|
74 |
+
encode_kwargs = {
|
75 |
+
"normalize_embeddings": bool(os.environ.get("NORMALIZE_EMBEDDINGS", ""))
|
76 |
+
}
|
77 |
+
print("encode_kwargs", encode_kwargs)
|
78 |
+
if "e5" in model_name:
|
79 |
+
embeddings = HuggingFaceInstructEmbeddings(model_name=model_name,
|
80 |
+
embed_instruction=E5_EMBED_INSTRUCTION,
|
81 |
+
query_instruction=E5_QUERY_INSTRUCTION,
|
82 |
+
encode_kwargs=encode_kwargs)
|
83 |
+
elif model_name.startswith("BAAI/bge-") and model_name.endswith("-en"):
|
84 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name=model_name,
|
85 |
+
query_instruction=BGE_EN_QUERY_INSTRUCTION,
|
86 |
+
encode_kwargs=encode_kwargs)
|
87 |
+
elif model_name.startswith("BAAI/bge-") and model_name.endswith("-zh"):
|
88 |
+
embeddings = HuggingFaceBgeEmbeddings(model_name=model_name,
|
89 |
+
query_instruction=BGE_ZH_QUERY_INSTRUCTION,
|
90 |
+
encode_kwargs=encode_kwargs)
|
91 |
+
else:
|
92 |
+
embeddings = HuggingFaceEmbeddings(
|
93 |
+
model_name=model_name, encode_kwargs=encode_kwargs)
|
94 |
+
|
95 |
+
if isinstance(request.input, str):
|
96 |
+
return CreateEmbeddingResponse(data=[Embedding(embedding=embeddings.embed_query(request.input))])
|
97 |
+
else:
|
98 |
+
data = [Embedding(embedding=embedding)
|
99 |
+
for embedding in embeddings.embed_documents(request.input)]
|
100 |
+
return CreateEmbeddingResponse(data=data)
|
101 |
+
|
102 |
+
|
103 |
+
@router.post(
|
104 |
+
"/v1/embeddings",
|
105 |
+
response_model=CreateEmbeddingResponse,
|
106 |
+
)
|
107 |
+
async def create_embedding(
|
108 |
+
request: CreateEmbeddingRequest
|
109 |
+
):
|
110 |
+
return _create_embedding(request)
|
111 |
+
# throw TypeError: 'CreateEmbeddingResponse' object is not callable?
|
112 |
+
# return await run_in_threadpool(
|
113 |
+
# _create_embedding(request)
|
114 |
+
# )
|
server-requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
fastapi
|
2 |
+
sse-starlette
|
3 |
+
sentence_transformers
|
4 |
+
langchain
|
5 |
+
uvicorn
|
start_server.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
python -B -m open.text.embeddings.server
|