Spaces:
Build error
Build error
| import pickle | |
| import pandas as pd | |
| import shap | |
| from shap.plots._force_matplotlib import draw_additive_plot | |
| import gradio as gr | |
| import numpy as np | |
| import matplotlib.pyplot as plt | |
| # load the model from disk | |
| loaded_model = pickle.load(open("heart_xgb.pkl", 'rb')) | |
| # Setup SHAP | |
| explainer = shap.Explainer(loaded_model) # PLEASE DO NOT CHANGE THIS. | |
| # Create the main function for server | |
| def main_func(age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall): | |
| new_row = pd.DataFrame.from_dict({'age':age,'sex':sex, | |
| 'cp':cp,'trtbps':trtbps,'chol':chol, | |
| 'fbs':fbs, 'restecg':restecg,'thalachh':thalachh,'exng':exng, | |
| 'oldpeak':oldpeak,'slp':slp,'caa':caa,'thall':thall}, | |
| orient = 'index').transpose() | |
| prob = loaded_model.predict_proba(new_row) | |
| shap_values = explainer(new_row) | |
| # plot = shap.force_plot(shap_values[0], matplotlib=True, figsize=(30,30), show=False) | |
| # plot = shap.plots.waterfall(shap_values[0], max_display=6, show=False) | |
| plot = shap.plots.bar(shap_values[0], max_display=6, order=shap.Explanation.abs, show_data='auto', show=False) | |
| plt.tight_layout() | |
| local_plot = plt.gcf() | |
| plt.close() | |
| return {"Low Chance": float(prob[0][0]), "High Chance": 1-float(prob[0][0])}, local_plot | |
| # Create the UI | |
| title = "**Heart Attack Predictor & Interpreter** πͺ" | |
| description1 = """This app takes info from subjects and predicts their heart attack likelihood. Do not use for medical diagnosis.""" | |
| description2 = """ | |
| To use the app, click on one of the examples, or adjust the values of the factors, and click on Analyze. π€ | |
| """ | |
| with gr.Blocks(title=title) as demo: | |
| gr.Markdown(f"## {title}") | |
| gr.Markdown(description1) | |
| gr.Markdown("""---""") | |
| gr.Markdown(description2) | |
| gr.Markdown("""---""") | |
| age = gr.Number(label="age Score", value=80) | |
| sex = gr.Radio(["Male", "Female"], label="Gender", type = "index", info = "What is your gender?") | |
| cp = gr.Radio([0,1,2,3], label="Chest Pain", info="Rate the severity of your chest pain [0: none, 5: ER RIGHT NOW]:") | |
| trtbps = gr.Number(label="Resting Blood Pressure", info = "What is your resting blood pressure?", minimum=1, maximum=200, value=4) | |
| chol = gr.Slider(label="Cholesterol", info="What is your Cholesterol level?", minimum=1, maximum=570, value=4, step=1) | |
| fbs = gr.Radio([1, 2, 3, 4, 5], label="Blood Sugar", info="Do you have high blood sugar? [1: Low, 5: Very High]") | |
| restecg = gr.Slider(label="EKG Score", info="Rate your EKG score, 1 being low, 5 being high", minimum=1, maximum=5, value=4, step=1) | |
| thalachh = gr.Number(label="Maximum Heart rate", value=4) | |
| exng = gr.Radio(["No", "Yes"], label="Exercise Risk", info="Do you have heart risk during exercise?", type="index") | |
| oldpeak = gr.Slider(label="Rate your ST depression during exercise:", minimum=1, maximum=10, value=5, step=0.1) | |
| slp = gr.Radio(["unslopping", "flat", "downsloping"], label="Slope" ,info="What is the slope of your peak ST segment", type="index") | |
| caa = gr.Slider(label="Major Blood Vessels", info="How many major blood vessels do you have?", minimum=0, maximum=4, value=2, step=1) | |
| thall = gr.Slider(label="thall Score", info="What is your thall score?", minimum=0, maximum=3, value=2, step=1) | |
| submit_btn = gr.Button("Analyze") | |
| with gr.Column(visible=True) as output_col: | |
| label = gr.Label(label = "Predicted Label") | |
| local_plot = gr.Plot(label = 'Shap:') | |
| submit_btn.click( | |
| main_func, | |
| [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], | |
| [label,local_plot], api_name="Heart_Predictor" | |
| ) | |
| gr.Markdown("### Click on any of the examples below to see how it works:") | |
| gr.Examples([[77,"Male",3,200,564, 1,2,202,1,6.2,2,4,1], [24,"Male",4,4,5,3,3,2,1,1,1,2,3]], [age, sex, cp, trtbps, chol, fbs, restecg, thalachh,exng,oldpeak,slp,caa,thall], [label,local_plot], main_func, cache_examples=True) | |
| demo.launch() |