|
import math |
|
from typing import Optional |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
import torchaudio |
|
from torchaudio.functional import resample |
|
|
|
from huggingface_hub import PyTorchModelHubMixin |
|
|
|
|
|
class SEModule(nn.Module): |
|
def __init__(self, channels : int , bottleneck : int = 128) -> None: |
|
super(SEModule, self).__init__() |
|
self.se = nn.Sequential( |
|
nn.AdaptiveAvgPool1d(1), |
|
nn.Conv1d(channels, bottleneck, kernel_size=1, padding=0), |
|
nn.ReLU(), |
|
|
|
nn.Conv1d(bottleneck, channels, kernel_size=1, padding=0), |
|
nn.Sigmoid(), |
|
) |
|
|
|
def forward(self, input : torch.Tensor) -> torch.Tensor: |
|
x = self.se(input) |
|
return input * x |
|
|
|
|
|
class Bottle2neck(nn.Module): |
|
def __init__(self, inplanes : int, planes : int, kernel_size : Optional[int] = None, dilation : Optional[int] = None, scale : int = 8) -> None: |
|
super(Bottle2neck, self).__init__() |
|
width = int(math.floor(planes / scale)) |
|
self.conv1 = nn.Conv1d(inplanes, width*scale, kernel_size=1) |
|
self.bn1 = nn.BatchNorm1d(width*scale) |
|
self.nums = scale -1 |
|
convs = [] |
|
bns = [] |
|
num_pad = math.floor(kernel_size/2)*dilation |
|
for i in range(self.nums): |
|
convs.append(nn.Conv1d(width, width, kernel_size=kernel_size, dilation=dilation, padding=num_pad)) |
|
bns.append(nn.BatchNorm1d(width)) |
|
self.convs = nn.ModuleList(convs) |
|
self.bns = nn.ModuleList(bns) |
|
self.conv3 = nn.Conv1d(width*scale, planes, kernel_size=1) |
|
self.bn3 = nn.BatchNorm1d(planes) |
|
self.relu = nn.ReLU() |
|
self.width = width |
|
self.se = SEModule(planes) |
|
|
|
def forward(self, x : torch.Tensor) -> torch.Tensor: |
|
residual = x |
|
out = self.conv1(x) |
|
out = self.relu(out) |
|
out = self.bn1(out) |
|
|
|
spx = torch.split(out, self.width, 1) |
|
for i in range(self.nums): |
|
if i==0: |
|
sp = spx[i] |
|
else: |
|
sp = sp + spx[i] |
|
sp = self.convs[i](sp) |
|
sp = self.relu(sp) |
|
sp = self.bns[i](sp) |
|
if i==0: |
|
out = sp |
|
else: |
|
out = torch.cat((out, sp), 1) |
|
out = torch.cat((out, spx[self.nums]),1) |
|
|
|
out = self.conv3(out) |
|
out = self.relu(out) |
|
out = self.bn3(out) |
|
|
|
out = self.se(out) |
|
out += residual |
|
return out |
|
|
|
|
|
class ECAPA_gender(nn.Module, PyTorchModelHubMixin): |
|
def __init__(self, C : int = 1024): |
|
super(ECAPA_gender, self).__init__() |
|
self.C = C |
|
self.conv1 = nn.Conv1d(80, C, kernel_size=5, stride=1, padding=2) |
|
self.relu = nn.ReLU() |
|
self.bn1 = nn.BatchNorm1d(C) |
|
self.layer1 = Bottle2neck(C, C, kernel_size=3, dilation=2, scale=8) |
|
self.layer2 = Bottle2neck(C, C, kernel_size=3, dilation=3, scale=8) |
|
self.layer3 = Bottle2neck(C, C, kernel_size=3, dilation=4, scale=8) |
|
|
|
self.layer4 = nn.Conv1d(3*C, 1536, kernel_size=1) |
|
self.attention = nn.Sequential( |
|
nn.Conv1d(4608, 256, kernel_size=1), |
|
nn.ReLU(), |
|
nn.BatchNorm1d(256), |
|
nn.Tanh(), |
|
nn.Conv1d(256, 1536, kernel_size=1), |
|
nn.Softmax(dim=2), |
|
) |
|
self.bn5 = nn.BatchNorm1d(3072) |
|
self.fc6 = nn.Linear(3072, 192) |
|
self.bn6 = nn.BatchNorm1d(192) |
|
self.fc7 = nn.Linear(192, 2) |
|
self.pred2gender = {0 : 'male', 1 : 'female'} |
|
|
|
def logtorchfbank(self, x : torch.Tensor) -> torch.Tensor: |
|
|
|
flipped_filter = torch.FloatTensor([-0.97, 1.]).unsqueeze(0).unsqueeze(0) |
|
x = x.unsqueeze(1) |
|
x = F.pad(x, (1, 0), 'reflect') |
|
x = F.conv1d(x, flipped_filter).squeeze(1) |
|
|
|
|
|
x = torchaudio.transforms.MelSpectrogram(sample_rate=16000, n_fft=512, win_length=400, hop_length=160, \ |
|
f_min = 20, f_max = 7600, window_fn=torch.hamming_window, n_mels=80)(x) + 1e-6 |
|
|
|
|
|
x = x.log() |
|
x = x - torch.mean(x, dim=-1, keepdim=True) |
|
return x |
|
|
|
def forward(self, x : torch.Tensor) -> torch.Tensor: |
|
x = self.logtorchfbank(x) |
|
|
|
x = self.conv1(x) |
|
x = self.relu(x) |
|
x = self.bn1(x) |
|
|
|
x1 = self.layer1(x) |
|
x2 = self.layer2(x+x1) |
|
x3 = self.layer3(x+x1+x2) |
|
|
|
x = self.layer4(torch.cat((x1,x2,x3),dim=1)) |
|
x = self.relu(x) |
|
|
|
t = x.size()[-1] |
|
|
|
global_x = torch.cat((x,torch.mean(x,dim=2,keepdim=True).repeat(1,1,t), torch.sqrt(torch.var(x,dim=2,keepdim=True).clamp(min=1e-4)).repeat(1,1,t)), dim=1) |
|
|
|
w = self.attention(global_x) |
|
|
|
mu = torch.sum(x * w, dim=2) |
|
sg = torch.sqrt( ( torch.sum((x**2) * w, dim=2) - mu**2 ).clamp(min=1e-4) ) |
|
|
|
x = torch.cat((mu,sg),1) |
|
x = self.bn5(x) |
|
x = self.fc6(x) |
|
x = self.bn6(x) |
|
x = self.relu(x) |
|
x = self.fc7(x) |
|
|
|
return x |
|
|
|
def load_audio(self, path : str) -> torch.Tensor: |
|
audio, sr = torchaudio.load(path) |
|
if sr != 16000: |
|
audio = resample(audio, sr, 16000) |
|
return audio |
|
|
|
def predict(self, audio : torch.Tensor) -> torch.Tensor: |
|
audio = self.load_audio(audio) |
|
self.eval() |
|
with torch.no_grad(): |
|
output = self.forward(audio) |
|
_, pred = output.max(1) |
|
return self.pred2gender[pred.item()] |