Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import torch.nn as nn | |
class TaikoEnergyLoss(nn.Module): | |
def __init__(self, reduction="mean"): | |
super().__init__() | |
# Use 'none' reduction to get element-wise losses, then manually apply masking and reduction | |
self.mse_loss = nn.MSELoss(reduction="none") | |
self.reduction = reduction | |
def forward(self, outputs, batch): | |
""" | |
Calculates the MSE loss for energy-based predictions. | |
Args: | |
outputs (dict): Model output, containing 'presence' tensor. | |
outputs['presence'] shape: (B, T, 3) for don, ka, drumroll energies. | |
batch (dict): Batch data from collate_fn, containing true labels and lengths. | |
batch['don_labels'], batch['ka_labels'], batch['drumroll_labels'] shape: (B, T) | |
batch['lengths'] shape: (B,) - valid sequence lengths for time dimension T. | |
Returns: | |
torch.Tensor: The calculated loss. | |
""" | |
pred_energies = outputs["presence"] # (B, T, 3) | |
true_don = batch["don_labels"] # (B, T) | |
true_ka = batch["ka_labels"] # (B, T) | |
true_drumroll = batch["drumroll_labels"] # (B, T) | |
# Stack true labels to match the structure of pred_energies (B, T, 3) | |
true_energies = torch.stack([true_don, true_ka, true_drumroll], dim=2) | |
B, T, _ = pred_energies.shape | |
# Create a mask based on batch['lengths'] to ignore padded parts of sequences | |
# batch['lengths'] gives the actual length of each sequence in the batch | |
# mask shape: (B, T) | |
mask_2d = torch.arange(T, device=pred_energies.device).expand(B, T) < batch[ | |
"lengths" | |
].unsqueeze(1) | |
# Expand mask to (B, T, 1) to broadcast across the 3 energy channels | |
mask_3d = mask_2d.unsqueeze(2) | |
# Calculate element-wise MSE loss | |
loss_elementwise = self.mse_loss(pred_energies, true_energies) # (B, T, 3) | |
# Apply the mask to the loss | |
masked_loss = loss_elementwise * mask_3d | |
if self.reduction == "mean": | |
# Sum the loss over all valid (unmasked) elements and divide by the number of valid elements | |
total_loss = masked_loss.sum() | |
num_valid_elements = mask_3d.sum() # Total number of unmasked float values | |
if num_valid_elements > 0: | |
return total_loss / num_valid_elements | |
else: | |
# Avoid division by zero if there are no valid elements (e.g., empty batch or all lengths are 0) | |
return torch.tensor( | |
0.0, device=pred_energies.device, requires_grad=True | |
) | |
elif self.reduction == "sum": | |
return masked_loss.sum() | |
else: # 'none' or any other case | |
return masked_loss | |