Next commited on
Commit
279af65
1 Parent(s): 1d37aeb

add daataset maker for more easy training

Browse files
Files changed (1) hide show
  1. app/dataset_maker.py +166 -0
app/dataset_maker.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yt_dlp
2
+ import numpy as np
3
+ import librosa
4
+ import soundfile as sf
5
+ import os
6
+ import zipfile
7
+
8
+
9
+ # Function to download audio from YouTube and save it as a WAV file
10
+ def download_youtube_audio(url, audio_name):
11
+ ydl_opts = {
12
+ 'format': 'bestaudio/best',
13
+ 'postprocessors': [{
14
+ 'key': 'FFmpegExtractAudio',
15
+ 'preferredcodec': 'wav',
16
+ }],
17
+ "outtmpl": f'youtubeaudio/{audio_name}', # Output template
18
+ }
19
+ with yt_dlp.YoutubeDL(ydl_opts) as ydl:
20
+ ydl.download([url])
21
+ return f'youtubeaudio/{audio_name}.wav'
22
+
23
+ # Function to calculate RMS
24
+ def get_rms(y, frame_length=2048, hop_length=512, pad_mode="constant"):
25
+ padding = (int(frame_length // 2), int(frame_length // 2))
26
+ y = np.pad(y, padding, mode=pad_mode)
27
+
28
+ axis = -1
29
+ out_strides = y.strides + tuple([y.strides[axis]])
30
+ x_shape_trimmed = list(y.shape)
31
+ x_shape_trimmed[axis] -= frame_length - 1
32
+ out_shape = tuple(x_shape_trimmed) + tuple([frame_length])
33
+ xw = np.lib.stride_tricks.as_strided(
34
+ y, shape=out_shape, strides=out_strides
35
+ )
36
+ if axis < 0:
37
+ target_axis = axis - 1
38
+ else:
39
+ target_axis = axis + 1
40
+ xw = np.moveaxis(xw, -1, target_axis)
41
+ slices = [slice(None)] * xw.ndim
42
+ slices[axis] = slice(0, None, hop_length)
43
+ x = xw[tuple(slices)]
44
+
45
+ power = np.mean(np.abs(x) ** 2, axis=-2, keepdims=True)
46
+ return np.sqrt(power)
47
+
48
+ # Slicer class
49
+ class Slicer:
50
+ def __init__(self, sr, threshold=-40., min_length=5000, min_interval=300, hop_size=20, max_sil_kept=5000):
51
+ if not min_length >= min_interval >= hop_size:
52
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
53
+ if not max_sil_kept >= hop_size:
54
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
55
+ min_interval = sr * min_interval / 1000
56
+ self.threshold = 10 ** (threshold / 20.)
57
+ self.hop_size = round(sr * hop_size / 1000)
58
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
59
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
60
+ self.min_interval = round(min_interval / self.hop_size)
61
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
62
+
63
+ def _apply_slice(self, waveform, begin, end):
64
+ if len(waveform.shape) > 1:
65
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
66
+ else:
67
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
68
+
69
+ def slice(self, waveform):
70
+ if len(waveform.shape) > 1:
71
+ samples = waveform.mean(axis=0)
72
+ else:
73
+ samples = waveform
74
+ if samples.shape[0] <= self.min_length:
75
+ return [waveform]
76
+ rms_list = get_rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
77
+ sil_tags = []
78
+ silence_start = None
79
+ clip_start = 0
80
+ for i, rms in enumerate(rms_list):
81
+ if rms < self.threshold:
82
+ if silence_start is None:
83
+ silence_start = i
84
+ continue
85
+ if silence_start is None:
86
+ continue
87
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
88
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
89
+ if not is_leading_silence and not need_slice_middle:
90
+ silence_start = None
91
+ continue
92
+ if i - silence_start <= self.max_sil_kept:
93
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
94
+ if silence_start == 0:
95
+ sil_tags.append((0, pos))
96
+ else:
97
+ sil_tags.append((pos, pos))
98
+ clip_start = pos
99
+ elif i - silence_start <= self.max_sil_kept * 2:
100
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
101
+ pos += i - self.max_sil_kept
102
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
103
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
104
+ if silence_start == 0:
105
+ sil_tags.append((0, pos_r))
106
+ clip_start = pos_r
107
+ else:
108
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
109
+ clip_start = max(pos_r, pos)
110
+ else:
111
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
112
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
113
+ if silence_start == 0:
114
+ sil_tags.append((0, pos_r))
115
+ else:
116
+ sil_tags.append((pos_l, pos_r))
117
+ clip_start = pos_r
118
+ silence_start = None
119
+ total_frames = rms_list.shape[0]
120
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
121
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
122
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
123
+ sil_tags.append((pos, total_frames + 1))
124
+ if len(sil_tags) == 0:
125
+ return [waveform]
126
+ else:
127
+ chunks = []
128
+ if sil_tags[0][0] > 0:
129
+ chunks.append(self._apply_slice(waveform, 0, sil_tags[0][0]))
130
+ for i in range(len(sil_tags) - 1):
131
+ chunks.append(self._apply_slice(waveform, sil_tags[i][1], sil_tags[i + 1][0]))
132
+ if sil_tags[-1][1] < total_frames:
133
+ chunks.append(self._apply_slice(waveform, sil_tags[-1][1], total_frames))
134
+ return chunks
135
+
136
+ # Function to slice and save audio chunks
137
+ def slice_audio(file_path, audio_name):
138
+ audio, sr = librosa.load(file_path, sr=None, mono=False)
139
+ os.makedirs(f'dataset/{audio_name}', exist_ok=True)
140
+ slicer = Slicer(sr=sr, threshold=-40, min_length=5000, min_interval=500, hop_size=10, max_sil_kept=500)
141
+ chunks = slicer.slice(audio)
142
+ for i, chunk in enumerate(chunks):
143
+ if len(chunk.shape) > 1:
144
+ chunk = chunk.T
145
+ sf.write(f'dataset/{audio_name}/split_{i}.wav', chunk, sr)
146
+ return f"dataset/{audio_name}"
147
+
148
+ # Function to zip the dataset directory
149
+ def zip_directory(directory_path, audio_name):
150
+ zip_file = f"dataset/{audio_name}.zip"
151
+ os.makedirs(os.path.dirname(zip_file), exist_ok=True) # Ensure the directory exists
152
+ with zipfile.ZipFile(zip_file, 'w', zipfile.ZIP_DEFLATED) as zipf:
153
+ for root, dirs, files in os.walk(directory_path):
154
+ for file in files:
155
+ file_path = os.path.join(root, file)
156
+ arcname = os.path.relpath(file_path, start=directory_path)
157
+ zipf.write(file_path, arcname)
158
+ return zip_file
159
+
160
+
161
+ # Gradio interface
162
+ def process_audio(url, audio_name):
163
+ file_path = download_youtube_audio(url, audio_name)
164
+ dataset_path = slice_audio(file_path, audio_name)
165
+ zip_file = zip_directory(dataset_path, audio_name)
166
+ return zip_file, print(f"{zip_file} successfully processed")