diffuse-custom / diffusers /pipelines /stochastic_karras_ve /pipeline_stochastic_karras_ve.py
Jackflack09's picture
Duplicate from YeOldHermit/Super-Resolution-Anime-Diffusion
522606a
# Copyright 2022 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Optional, Tuple, Union
import torch
from ...models import UNet2DModel
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput
from ...schedulers import KarrasVeScheduler
class KarrasVePipeline(DiffusionPipeline):
r"""
Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and
the VE column of Table 1 from [1] for reference.
[1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models."
https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic
differential equations." https://arxiv.org/abs/2011.13456
Parameters:
unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image.
scheduler ([`KarrasVeScheduler`]):
Scheduler for the diffusion process to be used in combination with `unet` to denoise the encoded image.
"""
# add type hints for linting
unet: UNet2DModel
scheduler: KarrasVeScheduler
def __init__(self, unet: UNet2DModel, scheduler: KarrasVeScheduler):
super().__init__()
self.register_modules(unet=unet, scheduler=scheduler)
@torch.no_grad()
def __call__(
self,
batch_size: int = 1,
num_inference_steps: int = 50,
generator: Optional[torch.Generator] = None,
output_type: Optional[str] = "pil",
return_dict: bool = True,
**kwargs,
) -> Union[Tuple, ImagePipelineOutput]:
r"""
Args:
batch_size (`int`, *optional*, defaults to 1):
The number of images to generate.
generator (`torch.Generator`, *optional*):
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
deterministic.
num_inference_steps (`int`, *optional*, defaults to 50):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
output_type (`str`, *optional*, defaults to `"pil"`):
The output format of the generate image. Choose between
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple.
Returns:
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the
generated images.
"""
img_size = self.unet.config.sample_size
shape = (batch_size, 3, img_size, img_size)
model = self.unet
# sample x_0 ~ N(0, sigma_0^2 * I)
sample = torch.randn(*shape) * self.scheduler.init_noise_sigma
sample = sample.to(self.device)
self.scheduler.set_timesteps(num_inference_steps)
for t in self.progress_bar(self.scheduler.timesteps):
# here sigma_t == t_i from the paper
sigma = self.scheduler.schedule[t]
sigma_prev = self.scheduler.schedule[t - 1] if t > 0 else 0
# 1. Select temporarily increased noise level sigma_hat
# 2. Add new noise to move from sample_i to sample_hat
sample_hat, sigma_hat = self.scheduler.add_noise_to_input(sample, sigma, generator=generator)
# 3. Predict the noise residual given the noise magnitude `sigma_hat`
# The model inputs and output are adjusted by following eq. (213) in [1].
model_output = (sigma_hat / 2) * model((sample_hat + 1) / 2, sigma_hat / 2).sample
# 4. Evaluate dx/dt at sigma_hat
# 5. Take Euler step from sigma to sigma_prev
step_output = self.scheduler.step(model_output, sigma_hat, sigma_prev, sample_hat)
if sigma_prev != 0:
# 6. Apply 2nd order correction
# The model inputs and output are adjusted by following eq. (213) in [1].
model_output = (sigma_prev / 2) * model((step_output.prev_sample + 1) / 2, sigma_prev / 2).sample
step_output = self.scheduler.step_correct(
model_output,
sigma_hat,
sigma_prev,
sample_hat,
step_output.prev_sample,
step_output["derivative"],
)
sample = step_output.prev_sample
sample = (sample / 2 + 0.5).clamp(0, 1)
image = sample.cpu().permute(0, 2, 3, 1).numpy()
if output_type == "pil":
image = self.numpy_to_pil(sample)
if not return_dict:
return (image,)
return ImagePipelineOutput(images=image)