Spaces:
Runtime error
Runtime error
| # Copyright 2022 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from typing import Callable, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| import PIL | |
| from transformers import CLIPFeatureExtractor, CLIPTokenizer | |
| from ...configuration_utils import FrozenDict | |
| from ...onnx_utils import ORT_TO_NP_TYPE, OnnxRuntimeModel | |
| from ...pipeline_utils import DiffusionPipeline | |
| from ...schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler | |
| from ...utils import PIL_INTERPOLATION, deprecate, logging | |
| from . import StableDiffusionPipelineOutput | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| NUM_UNET_INPUT_CHANNELS = 9 | |
| NUM_LATENT_CHANNELS = 4 | |
| def prepare_mask_and_masked_image(image, mask, latents_shape): | |
| image = np.array(image.convert("RGB").resize((latents_shape[1] * 8, latents_shape[0] * 8))) | |
| image = image[None].transpose(0, 3, 1, 2) | |
| image = image.astype(np.float32) / 127.5 - 1.0 | |
| image_mask = np.array(mask.convert("L").resize((latents_shape[1] * 8, latents_shape[0] * 8))) | |
| masked_image = image * (image_mask < 127.5) | |
| mask = mask.resize((latents_shape[1], latents_shape[0]), PIL_INTERPOLATION["nearest"]) | |
| mask = np.array(mask.convert("L")) | |
| mask = mask.astype(np.float32) / 255.0 | |
| mask = mask[None, None] | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| return mask, masked_image | |
| class OnnxStableDiffusionInpaintPipeline(DiffusionPipeline): | |
| r""" | |
| Pipeline for text-guided image inpainting using Stable Diffusion. *This is an experimental feature*. | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| """ | |
| vae_encoder: OnnxRuntimeModel | |
| vae_decoder: OnnxRuntimeModel | |
| text_encoder: OnnxRuntimeModel | |
| tokenizer: CLIPTokenizer | |
| unet: OnnxRuntimeModel | |
| scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler] | |
| safety_checker: OnnxRuntimeModel | |
| feature_extractor: CLIPFeatureExtractor | |
| _optional_components = ["safety_checker", "feature_extractor"] | |
| def __init__( | |
| self, | |
| vae_encoder: OnnxRuntimeModel, | |
| vae_decoder: OnnxRuntimeModel, | |
| text_encoder: OnnxRuntimeModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: OnnxRuntimeModel, | |
| scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler], | |
| safety_checker: OnnxRuntimeModel, | |
| feature_extractor: CLIPFeatureExtractor, | |
| requires_safety_checker: bool = True, | |
| ): | |
| super().__init__() | |
| logger.info("`OnnxStableDiffusionInpaintPipeline` is experimental and will very likely change in the future.") | |
| if hasattr(scheduler.config, "steps_offset") and scheduler.config.steps_offset != 1: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} is outdated. `steps_offset`" | |
| f" should be set to 1 instead of {scheduler.config.steps_offset}. Please make sure " | |
| "to update the config accordingly as leaving `steps_offset` might led to incorrect results" | |
| " in future versions. If you have downloaded this checkpoint from the Hugging Face Hub," | |
| " it would be very nice if you could open a Pull request for the `scheduler/scheduler_config.json`" | |
| " file" | |
| ) | |
| deprecate("steps_offset!=1", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["steps_offset"] = 1 | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is True: | |
| deprecation_message = ( | |
| f"The configuration file of this scheduler: {scheduler} has not set the configuration `clip_sample`." | |
| " `clip_sample` should be set to False in the configuration file. Please make sure to update the" | |
| " config accordingly as not setting `clip_sample` in the config might lead to incorrect results in" | |
| " future versions. If you have downloaded this checkpoint from the Hugging Face Hub, it would be very" | |
| " nice if you could open a Pull request for the `scheduler/scheduler_config.json` file" | |
| ) | |
| deprecate("clip_sample not set", "1.0.0", deprecation_message, standard_warn=False) | |
| new_config = dict(scheduler.config) | |
| new_config["clip_sample"] = False | |
| scheduler._internal_dict = FrozenDict(new_config) | |
| if safety_checker is None and requires_safety_checker: | |
| logger.warning( | |
| f"You have disabled the safety checker for {self.__class__} by passing `safety_checker=None`. Ensure" | |
| " that you abide to the conditions of the Stable Diffusion license and do not expose unfiltered" | |
| " results in services or applications open to the public. Both the diffusers team and Hugging Face" | |
| " strongly recommend to keep the safety filter enabled in all public facing circumstances, disabling" | |
| " it only for use-cases that involve analyzing network behavior or auditing its results. For more" | |
| " information, please have a look at https://github.com/huggingface/diffusers/pull/254 ." | |
| ) | |
| if safety_checker is not None and feature_extractor is None: | |
| raise ValueError( | |
| "Make sure to define a feature extractor when loading {self.__class__} if you want to use the safety" | |
| " checker. If you do not want to use the safety checker, you can pass `'safety_checker=None'` instead." | |
| ) | |
| self.register_modules( | |
| vae_encoder=vae_encoder, | |
| vae_decoder=vae_decoder, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| ) | |
| self.register_to_config(requires_safety_checker=requires_safety_checker) | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_onnx_stable_diffusion.OnnxStableDiffusionPipeline._encode_prompt | |
| def _encode_prompt(self, prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `list(int)`): | |
| prompt to be encoded | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| """ | |
| batch_size = len(prompt) if isinstance(prompt, list) else 1 | |
| # get prompt text embeddings | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="max_length", return_tensors="np").input_ids | |
| if not np.array_equal(text_input_ids, untruncated_ids): | |
| removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| text_embeddings = self.text_encoder(input_ids=text_input_ids.astype(np.int32))[0] | |
| text_embeddings = np.repeat(text_embeddings, num_images_per_prompt, axis=0) | |
| # get unconditional embeddings for classifier free guidance | |
| if do_classifier_free_guidance: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] * batch_size | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = text_input_ids.shape[-1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="np", | |
| ) | |
| uncond_embeddings = self.text_encoder(input_ids=uncond_input.input_ids.astype(np.int32))[0] | |
| uncond_embeddings = np.repeat(uncond_embeddings, num_images_per_prompt, axis=0) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| text_embeddings = np.concatenate([uncond_embeddings, text_embeddings]) | |
| return text_embeddings | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]], | |
| image: PIL.Image.Image, | |
| mask_image: PIL.Image.Image, | |
| height: Optional[int] = 512, | |
| width: Optional[int] = 512, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[np.random.RandomState] = None, | |
| latents: Optional[np.ndarray] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, np.ndarray], None]] = None, | |
| callback_steps: Optional[int] = 1, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`): | |
| The prompt or prompts to guide the image generation. | |
| image (`PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will | |
| be masked out with `mask_image` and repainted according to `prompt`. | |
| mask_image (`PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
| repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted | |
| to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) | |
| instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
| height (`int`, *optional*, defaults to 512): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to 512): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. Ignored when not using guidance (i.e., ignored | |
| if `guidance_scale` is less than `1`). | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`np.random.RandomState`, *optional*): | |
| A np.random.RandomState to make generation deterministic. | |
| latents (`np.ndarray`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: np.ndarray)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple. | |
| When returning a tuple, the first element is a list with the generated images, and the second element is a | |
| list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work" | |
| (nsfw) content, according to the `safety_checker`. | |
| """ | |
| if isinstance(prompt, str): | |
| batch_size = 1 | |
| elif isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if (callback_steps is None) or ( | |
| callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0) | |
| ): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if generator is None: | |
| generator = np.random | |
| # set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| text_embeddings = self._encode_prompt( | |
| prompt, num_images_per_prompt, do_classifier_free_guidance, negative_prompt | |
| ) | |
| num_channels_latents = NUM_LATENT_CHANNELS | |
| latents_shape = (batch_size * num_images_per_prompt, num_channels_latents, height // 8, width // 8) | |
| latents_dtype = text_embeddings.dtype | |
| if latents is None: | |
| latents = generator.randn(*latents_shape).astype(latents_dtype) | |
| else: | |
| if latents.shape != latents_shape: | |
| raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}") | |
| # prepare mask and masked_image | |
| mask, masked_image = prepare_mask_and_masked_image(image, mask_image, latents_shape[-2:]) | |
| mask = mask.astype(latents.dtype) | |
| masked_image = masked_image.astype(latents.dtype) | |
| masked_image_latents = self.vae_encoder(sample=masked_image)[0] | |
| masked_image_latents = 0.18215 * masked_image_latents | |
| # duplicate mask and masked_image_latents for each generation per prompt | |
| mask = mask.repeat(batch_size * num_images_per_prompt, 0) | |
| masked_image_latents = masked_image_latents.repeat(batch_size * num_images_per_prompt, 0) | |
| mask = np.concatenate([mask] * 2) if do_classifier_free_guidance else mask | |
| masked_image_latents = ( | |
| np.concatenate([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents | |
| ) | |
| num_channels_mask = mask.shape[1] | |
| num_channels_masked_image = masked_image_latents.shape[1] | |
| unet_input_channels = NUM_UNET_INPUT_CHANNELS | |
| if num_channels_latents + num_channels_mask + num_channels_masked_image != unet_input_channels: | |
| raise ValueError( | |
| "Incorrect configuration settings! The config of `pipeline.unet` expects" | |
| f" {unet_input_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
| f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | |
| " `pipeline.unet` or your `mask_image` or `image` input." | |
| ) | |
| # set timesteps | |
| self.scheduler.set_timesteps(num_inference_steps) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * np.float(self.scheduler.init_noise_sigma) | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| timestep_dtype = next( | |
| (input.type for input in self.unet.model.get_inputs() if input.name == "timestep"), "tensor(float)" | |
| ) | |
| timestep_dtype = ORT_TO_NP_TYPE[timestep_dtype] | |
| for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = np.concatenate([latents] * 2) if do_classifier_free_guidance else latents | |
| # concat latents, mask, masked_image_latnets in the channel dimension | |
| latent_model_input = self.scheduler.scale_model_input(torch.from_numpy(latent_model_input), t) | |
| latent_model_input = latent_model_input.cpu().numpy() | |
| latent_model_input = np.concatenate([latent_model_input, mask, masked_image_latents], axis=1) | |
| # predict the noise residual | |
| timestep = np.array([t], dtype=timestep_dtype) | |
| noise_pred = self.unet( | |
| sample=latent_model_input, timestep=timestep, encoder_hidden_states=text_embeddings | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = np.split(noise_pred, 2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| scheduler_output = self.scheduler.step( | |
| torch.from_numpy(noise_pred), t, torch.from_numpy(latents), **extra_step_kwargs | |
| ) | |
| latents = scheduler_output.prev_sample.numpy() | |
| # call the callback, if provided | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| latents = 1 / 0.18215 * latents | |
| # image = self.vae_decoder(latent_sample=latents)[0] | |
| # it seems likes there is a strange result for using half-precision vae decoder if batchsize>1 | |
| image = np.concatenate( | |
| [self.vae_decoder(latent_sample=latents[i : i + 1])[0] for i in range(latents.shape[0])] | |
| ) | |
| image = np.clip(image / 2 + 0.5, 0, 1) | |
| image = image.transpose((0, 2, 3, 1)) | |
| if self.safety_checker is not None: | |
| safety_checker_input = self.feature_extractor( | |
| self.numpy_to_pil(image), return_tensors="np" | |
| ).pixel_values.astype(image.dtype) | |
| # safety_checker does not support batched inputs yet | |
| images, has_nsfw_concept = [], [] | |
| for i in range(image.shape[0]): | |
| image_i, has_nsfw_concept_i = self.safety_checker( | |
| clip_input=safety_checker_input[i : i + 1], images=image[i : i + 1] | |
| ) | |
| images.append(image_i) | |
| has_nsfw_concept.append(has_nsfw_concept_i[0]) | |
| image = np.concatenate(images) | |
| else: | |
| has_nsfw_concept = None | |
| if output_type == "pil": | |
| image = self.numpy_to_pil(image) | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |