Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import importlib | |
import os | |
from dataclasses import dataclass | |
from typing import Any, Dict, Optional, Union | |
import torch | |
from ..utils import BaseOutput | |
SCHEDULER_CONFIG_NAME = "scheduler_config.json" | |
class SchedulerOutput(BaseOutput): | |
""" | |
Base class for the scheduler's step function output. | |
Args: | |
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images): | |
Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the | |
denoising loop. | |
""" | |
prev_sample: torch.FloatTensor | |
class SchedulerMixin: | |
""" | |
Mixin containing common functions for the schedulers. | |
Class attributes: | |
- **_compatibles** (`List[str]`) -- A list of classes that are compatible with the parent class, so that | |
`from_config` can be used from a class different than the one used to save the config (should be overridden | |
by parent class). | |
""" | |
config_name = SCHEDULER_CONFIG_NAME | |
_compatibles = [] | |
has_compatibles = True | |
def from_pretrained( | |
cls, | |
pretrained_model_name_or_path: Dict[str, Any] = None, | |
subfolder: Optional[str] = None, | |
return_unused_kwargs=False, | |
**kwargs, | |
): | |
r""" | |
Instantiate a Scheduler class from a pre-defined JSON configuration file inside a directory or Hub repo. | |
Parameters: | |
pretrained_model_name_or_path (`str` or `os.PathLike`, *optional*): | |
Can be either: | |
- A string, the *model id* of a model repo on huggingface.co. Valid model ids should have an | |
organization name, like `google/ddpm-celebahq-256`. | |
- A path to a *directory* containing the schedluer configurations saved using | |
[`~SchedulerMixin.save_pretrained`], e.g., `./my_model_directory/`. | |
subfolder (`str`, *optional*): | |
In case the relevant files are located inside a subfolder of the model repo (either remote in | |
huggingface.co or downloaded locally), you can specify the folder name here. | |
return_unused_kwargs (`bool`, *optional*, defaults to `False`): | |
Whether kwargs that are not consumed by the Python class should be returned or not. | |
cache_dir (`Union[str, os.PathLike]`, *optional*): | |
Path to a directory in which a downloaded pretrained model configuration should be cached if the | |
standard cache should not be used. | |
force_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to force the (re-)download of the model weights and configuration files, overriding the | |
cached versions if they exist. | |
resume_download (`bool`, *optional*, defaults to `False`): | |
Whether or not to delete incompletely received files. Will attempt to resume the download if such a | |
file exists. | |
proxies (`Dict[str, str]`, *optional*): | |
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', | |
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request. | |
output_loading_info(`bool`, *optional*, defaults to `False`): | |
Whether or not to also return a dictionary containing missing keys, unexpected keys and error messages. | |
local_files_only(`bool`, *optional*, defaults to `False`): | |
Whether or not to only look at local files (i.e., do not try to download the model). | |
use_auth_token (`str` or *bool*, *optional*): | |
The token to use as HTTP bearer authorization for remote files. If `True`, will use the token generated | |
when running `transformers-cli login` (stored in `~/.huggingface`). | |
revision (`str`, *optional*, defaults to `"main"`): | |
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a | |
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any | |
identifier allowed by git. | |
<Tip> | |
It is required to be logged in (`huggingface-cli login`) when you want to use private or [gated | |
models](https://huggingface.co/docs/hub/models-gated#gated-models). | |
</Tip> | |
<Tip> | |
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to | |
use this method in a firewalled environment. | |
</Tip> | |
""" | |
config, kwargs = cls.load_config( | |
pretrained_model_name_or_path=pretrained_model_name_or_path, | |
subfolder=subfolder, | |
return_unused_kwargs=True, | |
**kwargs, | |
) | |
return cls.from_config(config, return_unused_kwargs=return_unused_kwargs, **kwargs) | |
def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): | |
""" | |
Save a scheduler configuration object to the directory `save_directory`, so that it can be re-loaded using the | |
[`~SchedulerMixin.from_pretrained`] class method. | |
Args: | |
save_directory (`str` or `os.PathLike`): | |
Directory where the configuration JSON file will be saved (will be created if it does not exist). | |
""" | |
self.save_config(save_directory=save_directory, push_to_hub=push_to_hub, **kwargs) | |
def compatibles(self): | |
""" | |
Returns all schedulers that are compatible with this scheduler | |
Returns: | |
`List[SchedulerMixin]`: List of compatible schedulers | |
""" | |
return self._get_compatibles() | |
def _get_compatibles(cls): | |
compatible_classes_str = list(set([cls.__name__] + cls._compatibles)) | |
diffusers_library = importlib.import_module(__name__.split(".")[0]) | |
compatible_classes = [ | |
getattr(diffusers_library, c) for c in compatible_classes_str if hasattr(diffusers_library, c) | |
] | |
return compatible_classes | |