Spaces:
Runtime error
Runtime error
# Copyright 2022 TSAIL Team and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# DISCLAIMER: This file is strongly influenced by https://github.com/LuChengTHU/dpm-solver | |
import math | |
from dataclasses import dataclass | |
from typing import List, Optional, Tuple, Union | |
import flax | |
import jax | |
import jax.numpy as jnp | |
from ..configuration_utils import ConfigMixin, register_to_config | |
from ..utils import deprecate | |
from .scheduling_utils_flax import ( | |
_FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS, | |
FlaxSchedulerMixin, | |
FlaxSchedulerOutput, | |
broadcast_to_shape_from_left, | |
) | |
def betas_for_alpha_bar(num_diffusion_timesteps: int, max_beta=0.999) -> jnp.ndarray: | |
""" | |
Create a beta schedule that discretizes the given alpha_t_bar function, which defines the cumulative product of | |
(1-beta) over time from t = [0,1]. | |
Contains a function alpha_bar that takes an argument t and transforms it to the cumulative product of (1-beta) up | |
to that part of the diffusion process. | |
Args: | |
num_diffusion_timesteps (`int`): the number of betas to produce. | |
max_beta (`float`): the maximum beta to use; use values lower than 1 to | |
prevent singularities. | |
Returns: | |
betas (`jnp.ndarray`): the betas used by the scheduler to step the model outputs | |
""" | |
def alpha_bar(time_step): | |
return math.cos((time_step + 0.008) / 1.008 * math.pi / 2) ** 2 | |
betas = [] | |
for i in range(num_diffusion_timesteps): | |
t1 = i / num_diffusion_timesteps | |
t2 = (i + 1) / num_diffusion_timesteps | |
betas.append(min(1 - alpha_bar(t2) / alpha_bar(t1), max_beta)) | |
return jnp.array(betas, dtype=jnp.float32) | |
class DPMSolverMultistepSchedulerState: | |
# setable values | |
num_inference_steps: Optional[int] = None | |
timesteps: Optional[jnp.ndarray] = None | |
# running values | |
model_outputs: Optional[jnp.ndarray] = None | |
lower_order_nums: Optional[int] = None | |
step_index: Optional[int] = None | |
prev_timestep: Optional[int] = None | |
cur_sample: Optional[jnp.ndarray] = None | |
def create(cls, num_train_timesteps: int): | |
return cls(timesteps=jnp.arange(0, num_train_timesteps)[::-1]) | |
class FlaxDPMSolverMultistepSchedulerOutput(FlaxSchedulerOutput): | |
state: DPMSolverMultistepSchedulerState | |
class FlaxDPMSolverMultistepScheduler(FlaxSchedulerMixin, ConfigMixin): | |
""" | |
DPM-Solver (and the improved version DPM-Solver++) is a fast dedicated high-order solver for diffusion ODEs with | |
the convergence order guarantee. Empirically, sampling by DPM-Solver with only 20 steps can generate high-quality | |
samples, and it can generate quite good samples even in only 10 steps. | |
For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 | |
Currently, we support the multistep DPM-Solver for both noise prediction models and data prediction models. We | |
recommend to use `solver_order=2` for guided sampling, and `solver_order=3` for unconditional sampling. | |
We also support the "dynamic thresholding" method in Imagen (https://arxiv.org/abs/2205.11487). For pixel-space | |
diffusion models, you can set both `algorithm_type="dpmsolver++"` and `thresholding=True` to use the dynamic | |
thresholding. Note that the thresholding method is unsuitable for latent-space diffusion models (such as | |
stable-diffusion). | |
[`~ConfigMixin`] takes care of storing all config attributes that are passed in the scheduler's `__init__` | |
function, such as `num_train_timesteps`. They can be accessed via `scheduler.config.num_train_timesteps`. | |
[`SchedulerMixin`] provides general loading and saving functionality via the [`SchedulerMixin.save_pretrained`] and | |
[`~SchedulerMixin.from_pretrained`] functions. | |
For more details, see the original paper: https://arxiv.org/abs/2206.00927 and https://arxiv.org/abs/2211.01095 | |
Args: | |
num_train_timesteps (`int`): number of diffusion steps used to train the model. | |
beta_start (`float`): the starting `beta` value of inference. | |
beta_end (`float`): the final `beta` value. | |
beta_schedule (`str`): | |
the beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from | |
`linear`, `scaled_linear`, or `squaredcos_cap_v2`. | |
trained_betas (`np.ndarray`, optional): | |
option to pass an array of betas directly to the constructor to bypass `beta_start`, `beta_end` etc. | |
solver_order (`int`, default `2`): | |
the order of DPM-Solver; can be `1` or `2` or `3`. We recommend to use `solver_order=2` for guided | |
sampling, and `solver_order=3` for unconditional sampling. | |
prediction_type (`str`, default `epsilon`): | |
indicates whether the model predicts the noise (epsilon), or the data / `x0`. One of `epsilon`, `sample`, | |
or `v-prediction`. | |
thresholding (`bool`, default `False`): | |
whether to use the "dynamic thresholding" method (introduced by Imagen, https://arxiv.org/abs/2205.11487). | |
For pixel-space diffusion models, you can set both `algorithm_type=dpmsolver++` and `thresholding=True` to | |
use the dynamic thresholding. Note that the thresholding method is unsuitable for latent-space diffusion | |
models (such as stable-diffusion). | |
dynamic_thresholding_ratio (`float`, default `0.995`): | |
the ratio for the dynamic thresholding method. Default is `0.995`, the same as Imagen | |
(https://arxiv.org/abs/2205.11487). | |
sample_max_value (`float`, default `1.0`): | |
the threshold value for dynamic thresholding. Valid only when `thresholding=True` and | |
`algorithm_type="dpmsolver++`. | |
algorithm_type (`str`, default `dpmsolver++`): | |
the algorithm type for the solver. Either `dpmsolver` or `dpmsolver++`. The `dpmsolver` type implements the | |
algorithms in https://arxiv.org/abs/2206.00927, and the `dpmsolver++` type implements the algorithms in | |
https://arxiv.org/abs/2211.01095. We recommend to use `dpmsolver++` with `solver_order=2` for guided | |
sampling (e.g. stable-diffusion). | |
solver_type (`str`, default `midpoint`): | |
the solver type for the second-order solver. Either `midpoint` or `heun`. The solver type slightly affects | |
the sample quality, especially for small number of steps. We empirically find that `midpoint` solvers are | |
slightly better, so we recommend to use the `midpoint` type. | |
lower_order_final (`bool`, default `True`): | |
whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. We empirically | |
find this trick can stabilize the sampling of DPM-Solver for steps < 15, especially for steps <= 10. | |
""" | |
_compatibles = _FLAX_COMPATIBLE_STABLE_DIFFUSION_SCHEDULERS.copy() | |
_deprecated_kwargs = ["predict_epsilon"] | |
def has_state(self): | |
return True | |
def __init__( | |
self, | |
num_train_timesteps: int = 1000, | |
beta_start: float = 0.0001, | |
beta_end: float = 0.02, | |
beta_schedule: str = "linear", | |
trained_betas: Optional[jnp.ndarray] = None, | |
solver_order: int = 2, | |
prediction_type: str = "epsilon", | |
thresholding: bool = False, | |
dynamic_thresholding_ratio: float = 0.995, | |
sample_max_value: float = 1.0, | |
algorithm_type: str = "dpmsolver++", | |
solver_type: str = "midpoint", | |
lower_order_final: bool = True, | |
**kwargs, | |
): | |
message = ( | |
"Please make sure to instantiate your scheduler with `prediction_type` instead. E.g. `scheduler =" | |
" FlaxDPMSolverMultistepScheduler.from_pretrained(<model_id>, prediction_type='epsilon')`." | |
) | |
predict_epsilon = deprecate("predict_epsilon", "0.11.0", message, take_from=kwargs) | |
if predict_epsilon is not None: | |
self.register_to_config(prediction_type="epsilon" if predict_epsilon else "sample") | |
if trained_betas is not None: | |
self.betas = jnp.asarray(trained_betas) | |
elif beta_schedule == "linear": | |
self.betas = jnp.linspace(beta_start, beta_end, num_train_timesteps, dtype=jnp.float32) | |
elif beta_schedule == "scaled_linear": | |
# this schedule is very specific to the latent diffusion model. | |
self.betas = jnp.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=jnp.float32) ** 2 | |
elif beta_schedule == "squaredcos_cap_v2": | |
# Glide cosine schedule | |
self.betas = betas_for_alpha_bar(num_train_timesteps) | |
else: | |
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") | |
self.alphas = 1.0 - self.betas | |
self.alphas_cumprod = jnp.cumprod(self.alphas, axis=0) | |
# Currently we only support VP-type noise schedule | |
self.alpha_t = jnp.sqrt(self.alphas_cumprod) | |
self.sigma_t = jnp.sqrt(1 - self.alphas_cumprod) | |
self.lambda_t = jnp.log(self.alpha_t) - jnp.log(self.sigma_t) | |
# standard deviation of the initial noise distribution | |
self.init_noise_sigma = 1.0 | |
# settings for DPM-Solver | |
if algorithm_type not in ["dpmsolver", "dpmsolver++"]: | |
raise NotImplementedError(f"{algorithm_type} does is not implemented for {self.__class__}") | |
if solver_type not in ["midpoint", "heun"]: | |
raise NotImplementedError(f"{solver_type} does is not implemented for {self.__class__}") | |
def create_state(self): | |
return DPMSolverMultistepSchedulerState.create(num_train_timesteps=self.config.num_train_timesteps) | |
def set_timesteps( | |
self, state: DPMSolverMultistepSchedulerState, num_inference_steps: int, shape: Tuple | |
) -> DPMSolverMultistepSchedulerState: | |
""" | |
Sets the discrete timesteps used for the diffusion chain. Supporting function to be run before inference. | |
Args: | |
state (`DPMSolverMultistepSchedulerState`): | |
the `FlaxDPMSolverMultistepScheduler` state data class instance. | |
num_inference_steps (`int`): | |
the number of diffusion steps used when generating samples with a pre-trained model. | |
shape (`Tuple`): | |
the shape of the samples to be generated. | |
""" | |
timesteps = ( | |
jnp.linspace(0, self.config.num_train_timesteps - 1, num_inference_steps + 1) | |
.round()[::-1][:-1] | |
.astype(jnp.int32) | |
) | |
return state.replace( | |
num_inference_steps=num_inference_steps, | |
timesteps=timesteps, | |
model_outputs=jnp.zeros((self.config.solver_order,) + shape), | |
lower_order_nums=0, | |
step_index=0, | |
prev_timestep=-1, | |
cur_sample=jnp.zeros(shape), | |
) | |
def convert_model_output( | |
self, | |
model_output: jnp.ndarray, | |
timestep: int, | |
sample: jnp.ndarray, | |
) -> jnp.ndarray: | |
""" | |
Convert the model output to the corresponding type that the algorithm (DPM-Solver / DPM-Solver++) needs. | |
DPM-Solver is designed to discretize an integral of the noise prediction model, and DPM-Solver++ is designed to | |
discretize an integral of the data prediction model. So we need to first convert the model output to the | |
corresponding type to match the algorithm. | |
Note that the algorithm type and the model type is decoupled. That is to say, we can use either DPM-Solver or | |
DPM-Solver++ for both noise prediction model and data prediction model. | |
Args: | |
model_output (`jnp.ndarray`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`jnp.ndarray`): | |
current instance of sample being created by diffusion process. | |
Returns: | |
`jnp.ndarray`: the converted model output. | |
""" | |
# DPM-Solver++ needs to solve an integral of the data prediction model. | |
if self.config.algorithm_type == "dpmsolver++": | |
if self.config.prediction_type == "epsilon": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
x0_pred = (sample - sigma_t * model_output) / alpha_t | |
elif self.config.prediction_type == "sample": | |
x0_pred = model_output | |
elif self.config.prediction_type == "v_prediction": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
x0_pred = alpha_t * sample - sigma_t * model_output | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " | |
" or `v_prediction` for the FlaxDPMSolverMultistepScheduler." | |
) | |
if self.config.thresholding: | |
# Dynamic thresholding in https://arxiv.org/abs/2205.11487 | |
dynamic_max_val = jnp.percentile( | |
jnp.abs(x0_pred), self.config.dynamic_thresholding_ratio, axis=tuple(range(1, x0_pred.ndim)) | |
) | |
dynamic_max_val = jnp.maximum( | |
dynamic_max_val, self.config.sample_max_value * jnp.ones_like(dynamic_max_val) | |
) | |
x0_pred = jnp.clip(x0_pred, -dynamic_max_val, dynamic_max_val) / dynamic_max_val | |
return x0_pred | |
# DPM-Solver needs to solve an integral of the noise prediction model. | |
elif self.config.algorithm_type == "dpmsolver": | |
if self.config.prediction_type == "epsilon": | |
return model_output | |
elif self.config.prediction_type == "sample": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
epsilon = (sample - alpha_t * model_output) / sigma_t | |
return epsilon | |
elif self.config.prediction_type == "v_prediction": | |
alpha_t, sigma_t = self.alpha_t[timestep], self.sigma_t[timestep] | |
epsilon = alpha_t * model_output + sigma_t * sample | |
return epsilon | |
else: | |
raise ValueError( | |
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`, " | |
" or `v_prediction` for the FlaxDPMSolverMultistepScheduler." | |
) | |
def dpm_solver_first_order_update( | |
self, model_output: jnp.ndarray, timestep: int, prev_timestep: int, sample: jnp.ndarray | |
) -> jnp.ndarray: | |
""" | |
One step for the first-order DPM-Solver (equivalent to DDIM). | |
See https://arxiv.org/abs/2206.00927 for the detailed derivation. | |
Args: | |
model_output (`jnp.ndarray`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
sample (`jnp.ndarray`): | |
current instance of sample being created by diffusion process. | |
Returns: | |
`jnp.ndarray`: the sample tensor at the previous timestep. | |
""" | |
t, s0 = prev_timestep, timestep | |
m0 = model_output | |
lambda_t, lambda_s = self.lambda_t[t], self.lambda_t[s0] | |
alpha_t, alpha_s = self.alpha_t[t], self.alpha_t[s0] | |
sigma_t, sigma_s = self.sigma_t[t], self.sigma_t[s0] | |
h = lambda_t - lambda_s | |
if self.config.algorithm_type == "dpmsolver++": | |
x_t = (sigma_t / sigma_s) * sample - (alpha_t * (jnp.exp(-h) - 1.0)) * m0 | |
elif self.config.algorithm_type == "dpmsolver": | |
x_t = (alpha_t / alpha_s) * sample - (sigma_t * (jnp.exp(h) - 1.0)) * m0 | |
return x_t | |
def multistep_dpm_solver_second_order_update( | |
self, | |
model_output_list: jnp.ndarray, | |
timestep_list: List[int], | |
prev_timestep: int, | |
sample: jnp.ndarray, | |
) -> jnp.ndarray: | |
""" | |
One step for the second-order multistep DPM-Solver. | |
Args: | |
model_output_list (`List[jnp.ndarray]`): | |
direct outputs from learned diffusion model at current and latter timesteps. | |
timestep (`int`): current and latter discrete timestep in the diffusion chain. | |
prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
sample (`jnp.ndarray`): | |
current instance of sample being created by diffusion process. | |
Returns: | |
`jnp.ndarray`: the sample tensor at the previous timestep. | |
""" | |
t, s0, s1 = prev_timestep, timestep_list[-1], timestep_list[-2] | |
m0, m1 = model_output_list[-1], model_output_list[-2] | |
lambda_t, lambda_s0, lambda_s1 = self.lambda_t[t], self.lambda_t[s0], self.lambda_t[s1] | |
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
h, h_0 = lambda_t - lambda_s0, lambda_s0 - lambda_s1 | |
r0 = h_0 / h | |
D0, D1 = m0, (1.0 / r0) * (m0 - m1) | |
if self.config.algorithm_type == "dpmsolver++": | |
# See https://arxiv.org/abs/2211.01095 for detailed derivations | |
if self.config.solver_type == "midpoint": | |
x_t = ( | |
(sigma_t / sigma_s0) * sample | |
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | |
- 0.5 * (alpha_t * (jnp.exp(-h) - 1.0)) * D1 | |
) | |
elif self.config.solver_type == "heun": | |
x_t = ( | |
(sigma_t / sigma_s0) * sample | |
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 | |
) | |
elif self.config.algorithm_type == "dpmsolver": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
if self.config.solver_type == "midpoint": | |
x_t = ( | |
(alpha_t / alpha_s0) * sample | |
- (sigma_t * (jnp.exp(h) - 1.0)) * D0 | |
- 0.5 * (sigma_t * (jnp.exp(h) - 1.0)) * D1 | |
) | |
elif self.config.solver_type == "heun": | |
x_t = ( | |
(alpha_t / alpha_s0) * sample | |
- (sigma_t * (jnp.exp(h) - 1.0)) * D0 | |
- (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 | |
) | |
return x_t | |
def multistep_dpm_solver_third_order_update( | |
self, | |
model_output_list: jnp.ndarray, | |
timestep_list: List[int], | |
prev_timestep: int, | |
sample: jnp.ndarray, | |
) -> jnp.ndarray: | |
""" | |
One step for the third-order multistep DPM-Solver. | |
Args: | |
model_output_list (`List[jnp.ndarray]`): | |
direct outputs from learned diffusion model at current and latter timesteps. | |
timestep (`int`): current and latter discrete timestep in the diffusion chain. | |
prev_timestep (`int`): previous discrete timestep in the diffusion chain. | |
sample (`jnp.ndarray`): | |
current instance of sample being created by diffusion process. | |
Returns: | |
`jnp.ndarray`: the sample tensor at the previous timestep. | |
""" | |
t, s0, s1, s2 = prev_timestep, timestep_list[-1], timestep_list[-2], timestep_list[-3] | |
m0, m1, m2 = model_output_list[-1], model_output_list[-2], model_output_list[-3] | |
lambda_t, lambda_s0, lambda_s1, lambda_s2 = ( | |
self.lambda_t[t], | |
self.lambda_t[s0], | |
self.lambda_t[s1], | |
self.lambda_t[s2], | |
) | |
alpha_t, alpha_s0 = self.alpha_t[t], self.alpha_t[s0] | |
sigma_t, sigma_s0 = self.sigma_t[t], self.sigma_t[s0] | |
h, h_0, h_1 = lambda_t - lambda_s0, lambda_s0 - lambda_s1, lambda_s1 - lambda_s2 | |
r0, r1 = h_0 / h, h_1 / h | |
D0 = m0 | |
D1_0, D1_1 = (1.0 / r0) * (m0 - m1), (1.0 / r1) * (m1 - m2) | |
D1 = D1_0 + (r0 / (r0 + r1)) * (D1_0 - D1_1) | |
D2 = (1.0 / (r0 + r1)) * (D1_0 - D1_1) | |
if self.config.algorithm_type == "dpmsolver++": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
x_t = ( | |
(sigma_t / sigma_s0) * sample | |
- (alpha_t * (jnp.exp(-h) - 1.0)) * D0 | |
+ (alpha_t * ((jnp.exp(-h) - 1.0) / h + 1.0)) * D1 | |
- (alpha_t * ((jnp.exp(-h) - 1.0 + h) / h**2 - 0.5)) * D2 | |
) | |
elif self.config.algorithm_type == "dpmsolver": | |
# See https://arxiv.org/abs/2206.00927 for detailed derivations | |
x_t = ( | |
(alpha_t / alpha_s0) * sample | |
- (sigma_t * (jnp.exp(h) - 1.0)) * D0 | |
- (sigma_t * ((jnp.exp(h) - 1.0) / h - 1.0)) * D1 | |
- (sigma_t * ((jnp.exp(h) - 1.0 - h) / h**2 - 0.5)) * D2 | |
) | |
return x_t | |
def step( | |
self, | |
state: DPMSolverMultistepSchedulerState, | |
model_output: jnp.ndarray, | |
timestep: int, | |
sample: jnp.ndarray, | |
return_dict: bool = True, | |
) -> Union[FlaxDPMSolverMultistepSchedulerOutput, Tuple]: | |
""" | |
Predict the sample at the previous timestep by DPM-Solver. Core function to propagate the diffusion process | |
from the learned model outputs (most often the predicted noise). | |
Args: | |
state (`DPMSolverMultistepSchedulerState`): | |
the `FlaxDPMSolverMultistepScheduler` state data class instance. | |
model_output (`jnp.ndarray`): direct output from learned diffusion model. | |
timestep (`int`): current discrete timestep in the diffusion chain. | |
sample (`jnp.ndarray`): | |
current instance of sample being created by diffusion process. | |
return_dict (`bool`): option for returning tuple rather than FlaxDPMSolverMultistepSchedulerOutput class | |
Returns: | |
[`FlaxDPMSolverMultistepSchedulerOutput`] or `tuple`: [`FlaxDPMSolverMultistepSchedulerOutput`] if | |
`return_dict` is True, otherwise a `tuple`. When returning a tuple, the first element is the sample tensor. | |
""" | |
prev_timestep = jax.lax.cond( | |
state.step_index == len(state.timesteps) - 1, | |
lambda _: 0, | |
lambda _: state.timesteps[state.step_index + 1], | |
(), | |
) | |
model_output = self.convert_model_output(model_output, timestep, sample) | |
model_outputs_new = jnp.roll(state.model_outputs, -1, axis=0) | |
model_outputs_new = model_outputs_new.at[-1].set(model_output) | |
state = state.replace( | |
model_outputs=model_outputs_new, | |
prev_timestep=prev_timestep, | |
cur_sample=sample, | |
) | |
def step_1(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
return self.dpm_solver_first_order_update( | |
state.model_outputs[-1], | |
state.timesteps[state.step_index], | |
state.prev_timestep, | |
state.cur_sample, | |
) | |
def step_23(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
def step_2(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
timestep_list = jnp.array([state.timesteps[state.step_index - 1], state.timesteps[state.step_index]]) | |
return self.multistep_dpm_solver_second_order_update( | |
state.model_outputs, | |
timestep_list, | |
state.prev_timestep, | |
state.cur_sample, | |
) | |
def step_3(state: DPMSolverMultistepSchedulerState) -> jnp.ndarray: | |
timestep_list = jnp.array( | |
[ | |
state.timesteps[state.step_index - 2], | |
state.timesteps[state.step_index - 1], | |
state.timesteps[state.step_index], | |
] | |
) | |
return self.multistep_dpm_solver_third_order_update( | |
state.model_outputs, | |
timestep_list, | |
state.prev_timestep, | |
state.cur_sample, | |
) | |
if self.config.solver_order == 2: | |
return step_2(state) | |
elif self.config.lower_order_final and len(state.timesteps) < 15: | |
return jax.lax.cond( | |
state.lower_order_nums < 2, | |
step_2, | |
lambda state: jax.lax.cond( | |
state.step_index == len(state.timesteps) - 2, | |
step_2, | |
step_3, | |
state, | |
), | |
state, | |
) | |
else: | |
return jax.lax.cond( | |
state.lower_order_nums < 2, | |
step_2, | |
step_3, | |
state, | |
) | |
if self.config.solver_order == 1: | |
prev_sample = step_1(state) | |
elif self.config.lower_order_final and len(state.timesteps) < 15: | |
prev_sample = jax.lax.cond( | |
state.lower_order_nums < 1, | |
step_1, | |
lambda state: jax.lax.cond( | |
state.step_index == len(state.timesteps) - 1, | |
step_1, | |
step_23, | |
state, | |
), | |
state, | |
) | |
else: | |
prev_sample = jax.lax.cond( | |
state.lower_order_nums < 1, | |
step_1, | |
step_23, | |
state, | |
) | |
state = state.replace( | |
lower_order_nums=jnp.minimum(state.lower_order_nums + 1, self.config.solver_order), | |
step_index=(state.step_index + 1), | |
) | |
if not return_dict: | |
return (prev_sample, state) | |
return FlaxDPMSolverMultistepSchedulerOutput(prev_sample=prev_sample, state=state) | |
def scale_model_input( | |
self, state: DPMSolverMultistepSchedulerState, sample: jnp.ndarray, timestep: Optional[int] = None | |
) -> jnp.ndarray: | |
""" | |
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the | |
current timestep. | |
Args: | |
state (`DPMSolverMultistepSchedulerState`): | |
the `FlaxDPMSolverMultistepScheduler` state data class instance. | |
sample (`jnp.ndarray`): input sample | |
timestep (`int`, optional): current timestep | |
Returns: | |
`jnp.ndarray`: scaled input sample | |
""" | |
return sample | |
def add_noise( | |
self, | |
original_samples: jnp.ndarray, | |
noise: jnp.ndarray, | |
timesteps: jnp.ndarray, | |
) -> jnp.ndarray: | |
sqrt_alpha_prod = self.alphas_cumprod[timesteps] ** 0.5 | |
sqrt_alpha_prod = sqrt_alpha_prod.flatten() | |
sqrt_alpha_prod = broadcast_to_shape_from_left(sqrt_alpha_prod, original_samples.shape) | |
sqrt_one_minus_alpha_prod = (1 - self.alphas_cumprod[timesteps]) ** 0.0 | |
sqrt_one_minus_alpha_prod = sqrt_one_minus_alpha_prod.flatten() | |
sqrt_one_minus_alpha_prod = broadcast_to_shape_from_left(sqrt_one_minus_alpha_prod, original_samples.shape) | |
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise | |
return noisy_samples | |
def __len__(self): | |
return self.config.num_train_timesteps | |