Spaces:
Runtime error
Runtime error
# Copyright 2022 ETH Zurich Computer Vision Lab and The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Optional, Tuple, Union | |
import numpy as np | |
import torch | |
import PIL | |
from tqdm.auto import tqdm | |
from ...models import UNet2DModel | |
from ...pipeline_utils import DiffusionPipeline, ImagePipelineOutput | |
from ...schedulers import RePaintScheduler | |
def _preprocess_image(image: PIL.Image.Image): | |
image = np.array(image.convert("RGB")) | |
image = image[None].transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
return image | |
def _preprocess_mask(mask: PIL.Image.Image): | |
mask = np.array(mask.convert("L")) | |
mask = mask.astype(np.float32) / 255.0 | |
mask = mask[None, None] | |
mask[mask < 0.5] = 0 | |
mask[mask >= 0.5] = 1 | |
mask = torch.from_numpy(mask) | |
return mask | |
class RePaintPipeline(DiffusionPipeline): | |
unet: UNet2DModel | |
scheduler: RePaintScheduler | |
def __init__(self, unet, scheduler): | |
super().__init__() | |
self.register_modules(unet=unet, scheduler=scheduler) | |
def __call__( | |
self, | |
original_image: Union[torch.FloatTensor, PIL.Image.Image], | |
mask_image: Union[torch.FloatTensor, PIL.Image.Image], | |
num_inference_steps: int = 250, | |
eta: float = 0.0, | |
jump_length: int = 10, | |
jump_n_sample: int = 10, | |
generator: Optional[torch.Generator] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
) -> Union[ImagePipelineOutput, Tuple]: | |
r""" | |
Args: | |
original_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
The original image to inpaint on. | |
mask_image (`torch.FloatTensor` or `PIL.Image.Image`): | |
The mask_image where 0.0 values define which part of the original image to inpaint (change). | |
num_inference_steps (`int`, *optional*, defaults to 1000): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
eta (`float`): | |
The weight of noise for added noise in a diffusion step. Its value is between 0.0 and 1.0 - 0.0 is DDIM | |
and 1.0 is DDPM scheduler respectively. | |
jump_length (`int`, *optional*, defaults to 10): | |
The number of steps taken forward in time before going backward in time for a single jump ("j" in | |
RePaint paper). Take a look at Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. | |
jump_n_sample (`int`, *optional*, defaults to 10): | |
The number of times we will make forward time jump for a given chosen time sample. Take a look at | |
Figure 9 and 10 in https://arxiv.org/pdf/2201.09865.pdf. | |
generator (`torch.Generator`, *optional*): | |
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation | |
deterministic. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipeline_utils.ImagePipelineOutput`] instead of a plain tuple. | |
Returns: | |
[`~pipeline_utils.ImagePipelineOutput`] or `tuple`: [`~pipelines.utils.ImagePipelineOutput`] if | |
`return_dict` is True, otherwise a `tuple. When returning a tuple, the first element is a list with the | |
generated images. | |
""" | |
if not isinstance(original_image, torch.FloatTensor): | |
original_image = _preprocess_image(original_image) | |
original_image = original_image.to(self.device) | |
if not isinstance(mask_image, torch.FloatTensor): | |
mask_image = _preprocess_mask(mask_image) | |
mask_image = mask_image.to(self.device) | |
# sample gaussian noise to begin the loop | |
image = torch.randn( | |
original_image.shape, | |
generator=generator, | |
device=self.device, | |
) | |
image = image.to(self.device) | |
# set step values | |
self.scheduler.set_timesteps(num_inference_steps, jump_length, jump_n_sample, self.device) | |
self.scheduler.eta = eta | |
t_last = self.scheduler.timesteps[0] + 1 | |
for i, t in enumerate(tqdm(self.scheduler.timesteps)): | |
if t < t_last: | |
# predict the noise residual | |
model_output = self.unet(image, t).sample | |
# compute previous image: x_t -> x_t-1 | |
image = self.scheduler.step(model_output, t, image, original_image, mask_image, generator).prev_sample | |
else: | |
# compute the reverse: x_t-1 -> x_t | |
image = self.scheduler.undo_step(image, t_last, generator) | |
t_last = t | |
image = (image / 2 + 0.5).clamp(0, 1) | |
image = image.cpu().permute(0, 2, 3, 1).numpy() | |
if output_type == "pil": | |
image = self.numpy_to_pil(image) | |
if not return_dict: | |
return (image,) | |
return ImagePipelineOutput(images=image) | |