Spaces:
Runtime error
Runtime error
# Copyright 2022 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import flax.linen as nn | |
import jax.numpy as jnp | |
from .attention_flax import FlaxTransformer2DModel | |
from .resnet_flax import FlaxDownsample2D, FlaxResnetBlock2D, FlaxUpsample2D | |
class FlaxCrossAttnDownBlock2D(nn.Module): | |
r""" | |
Cross Attention 2D Downsizing block - original architecture from Unet transformers: | |
https://arxiv.org/abs/2103.06104 | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
out_channels (:obj:`int`): | |
Output channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of attention blocks layers | |
attn_num_head_channels (:obj:`int`, *optional*, defaults to 1): | |
Number of attention heads of each spatial transformer block | |
add_downsample (:obj:`bool`, *optional*, defaults to `True`): | |
Whether to add downsampling layer before each final output | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
out_channels: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
attn_num_head_channels: int = 1 | |
add_downsample: bool = True | |
use_linear_projection: bool = False | |
only_cross_attention: bool = False | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
resnets = [] | |
attentions = [] | |
for i in range(self.num_layers): | |
in_channels = self.in_channels if i == 0 else self.out_channels | |
res_block = FlaxResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=self.out_channels, | |
dropout_prob=self.dropout, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
attn_block = FlaxTransformer2DModel( | |
in_channels=self.out_channels, | |
n_heads=self.attn_num_head_channels, | |
d_head=self.out_channels // self.attn_num_head_channels, | |
depth=1, | |
use_linear_projection=self.use_linear_projection, | |
only_cross_attention=self.only_cross_attention, | |
dtype=self.dtype, | |
) | |
attentions.append(attn_block) | |
self.resnets = resnets | |
self.attentions = attentions | |
if self.add_downsample: | |
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) | |
def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True): | |
output_states = () | |
for resnet, attn in zip(self.resnets, self.attentions): | |
hidden_states = resnet(hidden_states, temb, deterministic=deterministic) | |
hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) | |
output_states += (hidden_states,) | |
if self.add_downsample: | |
hidden_states = self.downsamplers_0(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class FlaxDownBlock2D(nn.Module): | |
r""" | |
Flax 2D downsizing block | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
out_channels (:obj:`int`): | |
Output channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of attention blocks layers | |
add_downsample (:obj:`bool`, *optional*, defaults to `True`): | |
Whether to add downsampling layer before each final output | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
out_channels: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
add_downsample: bool = True | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
resnets = [] | |
for i in range(self.num_layers): | |
in_channels = self.in_channels if i == 0 else self.out_channels | |
res_block = FlaxResnetBlock2D( | |
in_channels=in_channels, | |
out_channels=self.out_channels, | |
dropout_prob=self.dropout, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
self.resnets = resnets | |
if self.add_downsample: | |
self.downsamplers_0 = FlaxDownsample2D(self.out_channels, dtype=self.dtype) | |
def __call__(self, hidden_states, temb, deterministic=True): | |
output_states = () | |
for resnet in self.resnets: | |
hidden_states = resnet(hidden_states, temb, deterministic=deterministic) | |
output_states += (hidden_states,) | |
if self.add_downsample: | |
hidden_states = self.downsamplers_0(hidden_states) | |
output_states += (hidden_states,) | |
return hidden_states, output_states | |
class FlaxCrossAttnUpBlock2D(nn.Module): | |
r""" | |
Cross Attention 2D Upsampling block - original architecture from Unet transformers: | |
https://arxiv.org/abs/2103.06104 | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
out_channels (:obj:`int`): | |
Output channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of attention blocks layers | |
attn_num_head_channels (:obj:`int`, *optional*, defaults to 1): | |
Number of attention heads of each spatial transformer block | |
add_upsample (:obj:`bool`, *optional*, defaults to `True`): | |
Whether to add upsampling layer before each final output | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
out_channels: int | |
prev_output_channel: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
attn_num_head_channels: int = 1 | |
add_upsample: bool = True | |
use_linear_projection: bool = False | |
only_cross_attention: bool = False | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
resnets = [] | |
attentions = [] | |
for i in range(self.num_layers): | |
res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels | |
resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels | |
res_block = FlaxResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=self.out_channels, | |
dropout_prob=self.dropout, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
attn_block = FlaxTransformer2DModel( | |
in_channels=self.out_channels, | |
n_heads=self.attn_num_head_channels, | |
d_head=self.out_channels // self.attn_num_head_channels, | |
depth=1, | |
use_linear_projection=self.use_linear_projection, | |
only_cross_attention=self.only_cross_attention, | |
dtype=self.dtype, | |
) | |
attentions.append(attn_block) | |
self.resnets = resnets | |
self.attentions = attentions | |
if self.add_upsample: | |
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) | |
def __call__(self, hidden_states, res_hidden_states_tuple, temb, encoder_hidden_states, deterministic=True): | |
for resnet, attn in zip(self.resnets, self.attentions): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) | |
hidden_states = resnet(hidden_states, temb, deterministic=deterministic) | |
hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) | |
if self.add_upsample: | |
hidden_states = self.upsamplers_0(hidden_states) | |
return hidden_states | |
class FlaxUpBlock2D(nn.Module): | |
r""" | |
Flax 2D upsampling block | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
out_channels (:obj:`int`): | |
Output channels | |
prev_output_channel (:obj:`int`): | |
Output channels from the previous block | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of attention blocks layers | |
add_downsample (:obj:`bool`, *optional*, defaults to `True`): | |
Whether to add downsampling layer before each final output | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
out_channels: int | |
prev_output_channel: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
add_upsample: bool = True | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
resnets = [] | |
for i in range(self.num_layers): | |
res_skip_channels = self.in_channels if (i == self.num_layers - 1) else self.out_channels | |
resnet_in_channels = self.prev_output_channel if i == 0 else self.out_channels | |
res_block = FlaxResnetBlock2D( | |
in_channels=resnet_in_channels + res_skip_channels, | |
out_channels=self.out_channels, | |
dropout_prob=self.dropout, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
self.resnets = resnets | |
if self.add_upsample: | |
self.upsamplers_0 = FlaxUpsample2D(self.out_channels, dtype=self.dtype) | |
def __call__(self, hidden_states, res_hidden_states_tuple, temb, deterministic=True): | |
for resnet in self.resnets: | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = jnp.concatenate((hidden_states, res_hidden_states), axis=-1) | |
hidden_states = resnet(hidden_states, temb, deterministic=deterministic) | |
if self.add_upsample: | |
hidden_states = self.upsamplers_0(hidden_states) | |
return hidden_states | |
class FlaxUNetMidBlock2DCrossAttn(nn.Module): | |
r""" | |
Cross Attention 2D Mid-level block - original architecture from Unet transformers: https://arxiv.org/abs/2103.06104 | |
Parameters: | |
in_channels (:obj:`int`): | |
Input channels | |
dropout (:obj:`float`, *optional*, defaults to 0.0): | |
Dropout rate | |
num_layers (:obj:`int`, *optional*, defaults to 1): | |
Number of attention blocks layers | |
attn_num_head_channels (:obj:`int`, *optional*, defaults to 1): | |
Number of attention heads of each spatial transformer block | |
dtype (:obj:`jnp.dtype`, *optional*, defaults to jnp.float32): | |
Parameters `dtype` | |
""" | |
in_channels: int | |
dropout: float = 0.0 | |
num_layers: int = 1 | |
attn_num_head_channels: int = 1 | |
use_linear_projection: bool = False | |
dtype: jnp.dtype = jnp.float32 | |
def setup(self): | |
# there is always at least one resnet | |
resnets = [ | |
FlaxResnetBlock2D( | |
in_channels=self.in_channels, | |
out_channels=self.in_channels, | |
dropout_prob=self.dropout, | |
dtype=self.dtype, | |
) | |
] | |
attentions = [] | |
for _ in range(self.num_layers): | |
attn_block = FlaxTransformer2DModel( | |
in_channels=self.in_channels, | |
n_heads=self.attn_num_head_channels, | |
d_head=self.in_channels // self.attn_num_head_channels, | |
depth=1, | |
use_linear_projection=self.use_linear_projection, | |
dtype=self.dtype, | |
) | |
attentions.append(attn_block) | |
res_block = FlaxResnetBlock2D( | |
in_channels=self.in_channels, | |
out_channels=self.in_channels, | |
dropout_prob=self.dropout, | |
dtype=self.dtype, | |
) | |
resnets.append(res_block) | |
self.resnets = resnets | |
self.attentions = attentions | |
def __call__(self, hidden_states, temb, encoder_hidden_states, deterministic=True): | |
hidden_states = self.resnets[0](hidden_states, temb) | |
for attn, resnet in zip(self.attentions, self.resnets[1:]): | |
hidden_states = attn(hidden_states, encoder_hidden_states, deterministic=deterministic) | |
hidden_states = resnet(hidden_states, temb, deterministic=deterministic) | |
return hidden_states | |