Jackflack09's picture
Duplicate from YeOldHermit/Super-Resolution-Anime-Diffusion
522606a
raw history blame
No virus
7.61 kB
from contextlib import contextmanager
from math import sqrt, log
import torch
import torch.nn as nn
# import warnings
# warnings.simplefilter('ignore')
class BaseModule(nn.Module):
def __init__(self):
self.act_fn = None
super(BaseModule, self).__init__()
def selu_init_params(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) and m.weight.requires_grad:
m.weight.data.normal_(0.0, 1.0 / sqrt(m.weight.numel()))
if m.bias is not None:
m.bias.data.fill_(0)
elif isinstance(m, nn.BatchNorm2d) and m.weight.requires_grad:
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear) and m.weight.requires_grad:
m.weight.data.normal_(0, 1.0 / sqrt(m.weight.numel()))
m.bias.data.zero_()
def initialize_weights_xavier_uniform(self):
for m in self.modules():
if isinstance(m, nn.Conv2d) and m.weight.requires_grad:
# nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='leaky_relu')
nn.init.xavier_uniform_(m.weight)
if m.bias is not None:
m.bias.data.zero_()
elif isinstance(m, nn.BatchNorm2d) and m.weight.requires_grad:
m.weight.data.fill_(1)
m.bias.data.zero_()
def load_state_dict(self, state_dict, strict=True, self_state=False):
own_state = self_state if self_state else self.state_dict()
for name, param in state_dict.items():
if name in own_state:
try:
own_state[name].copy_(param.data)
except Exception as e:
print("Parameter {} fails to load.".format(name))
print("-----------------------------------------")
print(e)
else:
print("Parameter {} is not in the model. ".format(name))
@contextmanager
def set_activation_inplace(self):
if hasattr(self, 'act_fn') and hasattr(self.act_fn, 'inplace'):
# save memory
self.act_fn.inplace = True
yield
self.act_fn.inplace = False
else:
yield
def total_parameters(self):
total = sum([i.numel() for i in self.parameters()])
trainable = sum([i.numel() for i in self.parameters() if i.requires_grad])
print("Total parameters : {}. Trainable parameters : {}".format(total, trainable))
return total
def forward(self, *x):
raise NotImplementedError
class ResidualFixBlock(BaseModule):
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, dilation=1,
groups=1, activation=nn.SELU(), conv=nn.Conv2d):
super(ResidualFixBlock, self).__init__()
self.act_fn = activation
self.m = nn.Sequential(
conv(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation, groups=groups),
activation,
# conv(out_channels, out_channels, kernel_size, padding=(kernel_size - 1) // 2, dilation=1, groups=groups),
conv(in_channels, out_channels, kernel_size, padding=padding, dilation=dilation, groups=groups),
)
def forward(self, x):
out = self.m(x)
return self.act_fn(out + x)
class ConvBlock(BaseModule):
def __init__(self, in_channels, out_channels, kernel_size=3, padding=1, dilation=1, groups=1,
activation=nn.SELU(), conv=nn.Conv2d):
super(ConvBlock, self).__init__()
self.m = nn.Sequential(conv(in_channels, out_channels, kernel_size, padding=padding,
dilation=dilation, groups=groups),
activation)
def forward(self, x):
return self.m(x)
class UpSampleBlock(BaseModule):
def __init__(self, channels, scale, activation, atrous_rate=1, conv=nn.Conv2d):
assert scale in [2, 4, 8], "Currently UpSampleBlock supports 2, 4, 8 scaling"
super(UpSampleBlock, self).__init__()
m = nn.Sequential(
conv(channels, 4 * channels, kernel_size=3, padding=atrous_rate, dilation=atrous_rate),
activation,
nn.PixelShuffle(2)
)
self.m = nn.Sequential(*[m for _ in range(int(log(scale, 2)))])
def forward(self, x):
return self.m(x)
class SpatialChannelSqueezeExcitation(BaseModule):
# https://arxiv.org/abs/1709.01507
# https://arxiv.org/pdf/1803.02579v1.pdf
def __init__(self, in_channel, reduction=16, activation=nn.ReLU()):
super(SpatialChannelSqueezeExcitation, self).__init__()
linear_nodes = max(in_channel // reduction, 4) # avoid only 1 node case
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.channel_excite = nn.Sequential(
# check the paper for the number 16 in reduction. It is selected by experiment.
nn.Linear(in_channel, linear_nodes),
activation,
nn.Linear(linear_nodes, in_channel),
nn.Sigmoid()
)
self.spatial_excite = nn.Sequential(
nn.Conv2d(in_channel, 1, kernel_size=1, stride=1, padding=0, bias=False),
nn.Sigmoid()
)
def forward(self, x):
b, c, h, w = x.size()
#
channel = self.avg_pool(x).view(b, c)
# channel = F.avg_pool2d(x, kernel_size=(h,w)).view(b,c) # used for porting to other frameworks
cSE = self.channel_excite(channel).view(b, c, 1, 1)
x_cSE = torch.mul(x, cSE)
# spatial
sSE = self.spatial_excite(x)
x_sSE = torch.mul(x, sSE)
# return x_sSE
return torch.add(x_cSE, x_sSE)
class PartialConv(nn.Module):
# reference:
# Image Inpainting for Irregular Holes Using Partial Convolutions
# http://masc.cs.gmu.edu/wiki/partialconv/show?time=2018-05-24+21%3A41%3A10
# https://github.com/naoto0804/pytorch-inpainting-with-partial-conv/blob/master/net.py
# https://github.com/SeitaroShinagawa/chainer-partial_convolution_image_inpainting/blob/master/common/net.py
# partial based padding
# https: // github.com / NVIDIA / partialconv / blob / master / models / pd_resnet.py
def __init__(self, in_channels, out_channels, kernel_size, stride=1,
padding=0, dilation=1, groups=1, bias=True):
super(PartialConv, self).__init__()
self.feature_conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride,
padding, dilation, groups, bias)
self.mask_conv = nn.Conv2d(1, 1, kernel_size, stride,
padding, dilation, groups, bias=False)
self.window_size = self.mask_conv.kernel_size[0] * self.mask_conv.kernel_size[1]
torch.nn.init.constant_(self.mask_conv.weight, 1.0)
for param in self.mask_conv.parameters():
param.requires_grad = False
def forward(self, x):
output = self.feature_conv(x)
if self.feature_conv.bias is not None:
output_bias = self.feature_conv.bias.view(1, -1, 1, 1).expand_as(output)
else:
output_bias = torch.zeros_like(output, device=x.device)
with torch.no_grad():
ones = torch.ones(1, 1, x.size(2), x.size(3), device=x.device)
output_mask = self.mask_conv(ones)
output_mask = self.window_size / output_mask
output = (output - output_bias) * output_mask + output_bias
return output