Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import pipeline | |
import torch | |
from peft import PeftModel, PeftConfig | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
peft_model_id = "JackLiuAngel/bloom-7b1-lora-alfred-team-20240730" | |
config = PeftConfig.from_pretrained(peft_model_id) | |
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto') | |
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) | |
# Load the Lora model | |
model = PeftModel.from_pretrained(model, peft_model_id) | |
# sentiment_pipeline = pipeline("sentiment-analysis") | |
st.title("Team info finetuned in bigscience/bloom-7b1") | |
st.write("ask a question about our team:") | |
user_input = st.text_input("") | |
if user_input: | |
batch = tokenizer(f"β{user_input}β ->: ", return_tensors='pt') | |
with torch.cuda.amp.autocast(): | |
output_tokens = model.generate(**batch, max_new_tokens=50) | |
# print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=True)) | |
result = tokenizer.decode(output_tokens[0], skip_special_tokens=True) | |
st.write(f"reply: {result}") | |