guetLzy commited on
Commit
5f5d2fd
·
1 Parent(s): 32fc289

Upload 6 files

Browse files
options/finetune_realesrgan_x4plus.yml ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: finetune_RealESRGANx4plus_400k
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+
93
+ network_d:
94
+ type: UNetDiscriminatorSN
95
+ num_in_ch: 3
96
+ num_feat: 64
97
+ skip_connection: True
98
+
99
+ # path
100
+ path:
101
+ # use the pre-trained Real-ESRNet model
102
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
103
+ param_key_g: params_ema
104
+ strict_load_g: true
105
+ pretrain_network_d: experiments/pretrained_models/RealESRGAN_x4plus_netD.pth
106
+ param_key_d: params
107
+ strict_load_d: true
108
+ resume_state: ~
109
+
110
+ # training settings
111
+ train:
112
+ ema_decay: 0.999
113
+ optim_g:
114
+ type: Adam
115
+ lr: !!float 1e-4
116
+ weight_decay: 0
117
+ betas: [0.9, 0.99]
118
+ optim_d:
119
+ type: Adam
120
+ lr: !!float 1e-4
121
+ weight_decay: 0
122
+ betas: [0.9, 0.99]
123
+
124
+ scheduler:
125
+ type: MultiStepLR
126
+ milestones: [400000]
127
+ gamma: 0.5
128
+
129
+ total_iter: 400000
130
+ warmup_iter: -1 # no warm up
131
+
132
+ # losses
133
+ pixel_opt:
134
+ type: L1Loss
135
+ loss_weight: 1.0
136
+ reduction: mean
137
+ # perceptual loss (content and style losses)
138
+ perceptual_opt:
139
+ type: PerceptualLoss
140
+ layer_weights:
141
+ # before relu
142
+ 'conv1_2': 0.1
143
+ 'conv2_2': 0.1
144
+ 'conv3_4': 1
145
+ 'conv4_4': 1
146
+ 'conv5_4': 1
147
+ vgg_type: vgg19
148
+ use_input_norm: true
149
+ perceptual_weight: !!float 1.0
150
+ style_weight: 0
151
+ range_norm: false
152
+ criterion: l1
153
+ # gan loss
154
+ gan_opt:
155
+ type: GANLoss
156
+ gan_type: vanilla
157
+ real_label_val: 1.0
158
+ fake_label_val: 0.0
159
+ loss_weight: !!float 1e-1
160
+
161
+ net_d_iters: 1
162
+ net_d_init_iters: 0
163
+
164
+ # Uncomment these for validation
165
+ # validation settings
166
+ # val:
167
+ # val_freq: !!float 5e3
168
+ # save_img: True
169
+
170
+ # metrics:
171
+ # psnr: # metric name
172
+ # type: calculate_psnr
173
+ # crop_border: 4
174
+ # test_y_channel: false
175
+
176
+ # logging settings
177
+ logger:
178
+ print_freq: 100
179
+ save_checkpoint_freq: !!float 5e3
180
+ use_tb_logger: true
181
+ wandb:
182
+ project: ~
183
+ resume_id: ~
184
+
185
+ # dist training settings
186
+ dist_params:
187
+ backend: nccl
188
+ port: 29500
options/finetune_realesrgan_x4plus_pairdata.yml ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: finetune_RealESRGANx4plus_400k_pairdata
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto
6
+ manual_seed: 0
7
+
8
+ # USM the ground-truth
9
+ l1_gt_usm: True
10
+ percep_gt_usm: True
11
+ gan_gt_usm: False
12
+
13
+ high_order_degradation: False # do not use the high-order degradation generation process
14
+
15
+ # dataset and data loader settings
16
+ datasets:
17
+ train:
18
+ name: DIV2K
19
+ type: RealESRGANPairedDataset
20
+ dataroot_gt: datasets/DF2K
21
+ dataroot_lq: datasets/DF2K
22
+ meta_info: datasets/DF2K/meta_info/meta_info_DIV2K_sub_pair.txt
23
+ io_backend:
24
+ type: disk
25
+
26
+ gt_size: 256
27
+ use_hflip: True
28
+ use_rot: False
29
+
30
+ # data loader
31
+ use_shuffle: true
32
+ num_worker_per_gpu: 5
33
+ batch_size_per_gpu: 12
34
+ dataset_enlarge_ratio: 1
35
+ prefetch_mode: ~
36
+
37
+ # Uncomment these for validation
38
+ # val:
39
+ # name: validation
40
+ # type: PairedImageDataset
41
+ # dataroot_gt: path_to_gt
42
+ # dataroot_lq: path_to_lq
43
+ # io_backend:
44
+ # type: disk
45
+
46
+ # network structures
47
+ network_g:
48
+ type: RRDBNet
49
+ num_in_ch: 3
50
+ num_out_ch: 3
51
+ num_feat: 64
52
+ num_block: 23
53
+ num_grow_ch: 32
54
+
55
+ network_d:
56
+ type: UNetDiscriminatorSN
57
+ num_in_ch: 3
58
+ num_feat: 64
59
+ skip_connection: True
60
+
61
+ # path
62
+ path:
63
+ # use the pre-trained Real-ESRNet model
64
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
65
+ param_key_g: params_ema
66
+ strict_load_g: true
67
+ pretrain_network_d: experiments/pretrained_models/RealESRGAN_x4plus_netD.pth
68
+ param_key_d: params
69
+ strict_load_d: true
70
+ resume_state: ~
71
+
72
+ # training settings
73
+ train:
74
+ ema_decay: 0.999
75
+ optim_g:
76
+ type: Adam
77
+ lr: !!float 1e-4
78
+ weight_decay: 0
79
+ betas: [0.9, 0.99]
80
+ optim_d:
81
+ type: Adam
82
+ lr: !!float 1e-4
83
+ weight_decay: 0
84
+ betas: [0.9, 0.99]
85
+
86
+ scheduler:
87
+ type: MultiStepLR
88
+ milestones: [400000]
89
+ gamma: 0.5
90
+
91
+ total_iter: 400000
92
+ warmup_iter: -1 # no warm up
93
+
94
+ # losses
95
+ pixel_opt:
96
+ type: L1Loss
97
+ loss_weight: 1.0
98
+ reduction: mean
99
+ # perceptual loss (content and style losses)
100
+ perceptual_opt:
101
+ type: PerceptualLoss
102
+ layer_weights:
103
+ # before relu
104
+ 'conv1_2': 0.1
105
+ 'conv2_2': 0.1
106
+ 'conv3_4': 1
107
+ 'conv4_4': 1
108
+ 'conv5_4': 1
109
+ vgg_type: vgg19
110
+ use_input_norm: true
111
+ perceptual_weight: !!float 1.0
112
+ style_weight: 0
113
+ range_norm: false
114
+ criterion: l1
115
+ # gan loss
116
+ gan_opt:
117
+ type: GANLoss
118
+ gan_type: vanilla
119
+ real_label_val: 1.0
120
+ fake_label_val: 0.0
121
+ loss_weight: !!float 1e-1
122
+
123
+ net_d_iters: 1
124
+ net_d_init_iters: 0
125
+
126
+ # Uncomment these for validation
127
+ # validation settings
128
+ # val:
129
+ # val_freq: !!float 5e3
130
+ # save_img: True
131
+
132
+ # metrics:
133
+ # psnr: # metric name
134
+ # type: calculate_psnr
135
+ # crop_border: 4
136
+ # test_y_channel: false
137
+
138
+ # logging settings
139
+ logger:
140
+ print_freq: 100
141
+ save_checkpoint_freq: !!float 5e3
142
+ use_tb_logger: true
143
+ wandb:
144
+ project: ~
145
+ resume_id: ~
146
+
147
+ # dist training settings
148
+ dist_params:
149
+ backend: nccl
150
+ port: 29500
options/train_realesrgan_x2plus.yml ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRGANx2plus_400k_B12G4
3
+ model_type: RealESRGANModel
4
+ scale: 2
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+ scale: 2
93
+
94
+ network_d:
95
+ type: UNetDiscriminatorSN
96
+ num_in_ch: 3
97
+ num_feat: 64
98
+ skip_connection: True
99
+
100
+ # path
101
+ path:
102
+ # use the pre-trained Real-ESRNet model
103
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x2plus.pth
104
+ param_key_g: params_ema
105
+ strict_load_g: true
106
+ resume_state: ~
107
+
108
+ # training settings
109
+ train:
110
+ ema_decay: 0.999
111
+ optim_g:
112
+ type: Adam
113
+ lr: !!float 1e-4
114
+ weight_decay: 0
115
+ betas: [0.9, 0.99]
116
+ optim_d:
117
+ type: Adam
118
+ lr: !!float 1e-4
119
+ weight_decay: 0
120
+ betas: [0.9, 0.99]
121
+
122
+ scheduler:
123
+ type: MultiStepLR
124
+ milestones: [400000]
125
+ gamma: 0.5
126
+
127
+ total_iter: 400000
128
+ warmup_iter: -1 # no warm up
129
+
130
+ # losses
131
+ pixel_opt:
132
+ type: L1Loss
133
+ loss_weight: 1.0
134
+ reduction: mean
135
+ # perceptual loss (content and style losses)
136
+ perceptual_opt:
137
+ type: PerceptualLoss
138
+ layer_weights:
139
+ # before relu
140
+ 'conv1_2': 0.1
141
+ 'conv2_2': 0.1
142
+ 'conv3_4': 1
143
+ 'conv4_4': 1
144
+ 'conv5_4': 1
145
+ vgg_type: vgg19
146
+ use_input_norm: true
147
+ perceptual_weight: !!float 1.0
148
+ style_weight: 0
149
+ range_norm: false
150
+ criterion: l1
151
+ # gan loss
152
+ gan_opt:
153
+ type: GANLoss
154
+ gan_type: vanilla
155
+ real_label_val: 1.0
156
+ fake_label_val: 0.0
157
+ loss_weight: !!float 1e-1
158
+
159
+ net_d_iters: 1
160
+ net_d_init_iters: 0
161
+
162
+ # Uncomment these for validation
163
+ # validation settings
164
+ # val:
165
+ # val_freq: !!float 5e3
166
+ # save_img: True
167
+
168
+ # metrics:
169
+ # psnr: # metric name
170
+ # type: calculate_psnr
171
+ # crop_border: 4
172
+ # test_y_channel: false
173
+
174
+ # logging settings
175
+ logger:
176
+ print_freq: 100
177
+ save_checkpoint_freq: !!float 5e3
178
+ use_tb_logger: true
179
+ wandb:
180
+ project: ~
181
+ resume_id: ~
182
+
183
+ # dist training settings
184
+ dist_params:
185
+ backend: nccl
186
+ port: 29500
options/train_realesrgan_x4plus.yml ADDED
@@ -0,0 +1,185 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRGANx4plus_400k_B12G4
3
+ model_type: RealESRGANModel
4
+ scale: 4
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRGANModel ----------------- #
9
+ # USM the ground-truth
10
+ l1_gt_usm: True
11
+ percep_gt_usm: True
12
+ gan_gt_usm: False
13
+
14
+ # the first degradation process
15
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
16
+ resize_range: [0.15, 1.5]
17
+ gaussian_noise_prob: 0.5
18
+ noise_range: [1, 30]
19
+ poisson_scale_range: [0.05, 3]
20
+ gray_noise_prob: 0.4
21
+ jpeg_range: [30, 95]
22
+
23
+ # the second degradation process
24
+ second_blur_prob: 0.8
25
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
26
+ resize_range2: [0.3, 1.2]
27
+ gaussian_noise_prob2: 0.5
28
+ noise_range2: [1, 25]
29
+ poisson_scale_range2: [0.05, 2.5]
30
+ gray_noise_prob2: 0.4
31
+ jpeg_range2: [30, 95]
32
+
33
+ gt_size: 256
34
+ queue_size: 180
35
+
36
+ # dataset and data loader settings
37
+ datasets:
38
+ train:
39
+ name: DF2K+OST
40
+ type: RealESRGANDataset
41
+ dataroot_gt: datasets/DF2K
42
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
43
+ io_backend:
44
+ type: disk
45
+
46
+ blur_kernel_size: 21
47
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
48
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
49
+ sinc_prob: 0.1
50
+ blur_sigma: [0.2, 3]
51
+ betag_range: [0.5, 4]
52
+ betap_range: [1, 2]
53
+
54
+ blur_kernel_size2: 21
55
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
56
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
57
+ sinc_prob2: 0.1
58
+ blur_sigma2: [0.2, 1.5]
59
+ betag_range2: [0.5, 4]
60
+ betap_range2: [1, 2]
61
+
62
+ final_sinc_prob: 0.8
63
+
64
+ gt_size: 256
65
+ use_hflip: True
66
+ use_rot: False
67
+
68
+ # data loader
69
+ use_shuffle: true
70
+ num_worker_per_gpu: 5
71
+ batch_size_per_gpu: 12
72
+ dataset_enlarge_ratio: 1
73
+ prefetch_mode: ~
74
+
75
+ # Uncomment these for validation
76
+ # val:
77
+ # name: validation
78
+ # type: PairedImageDataset
79
+ # dataroot_gt: path_to_gt
80
+ # dataroot_lq: path_to_lq
81
+ # io_backend:
82
+ # type: disk
83
+
84
+ # network structures
85
+ network_g:
86
+ type: RRDBNet
87
+ num_in_ch: 3
88
+ num_out_ch: 3
89
+ num_feat: 64
90
+ num_block: 23
91
+ num_grow_ch: 32
92
+
93
+ network_d:
94
+ type: UNetDiscriminatorSN
95
+ num_in_ch: 3
96
+ num_feat: 64
97
+ skip_connection: True
98
+
99
+ # path
100
+ path:
101
+ # use the pre-trained Real-ESRNet model
102
+ pretrain_network_g: experiments/pretrained_models/RealESRNet_x4plus.pth
103
+ param_key_g: params_ema
104
+ strict_load_g: true
105
+ resume_state: ~
106
+
107
+ # training settings
108
+ train:
109
+ ema_decay: 0.999
110
+ optim_g:
111
+ type: Adam
112
+ lr: !!float 1e-4
113
+ weight_decay: 0
114
+ betas: [0.9, 0.99]
115
+ optim_d:
116
+ type: Adam
117
+ lr: !!float 1e-4
118
+ weight_decay: 0
119
+ betas: [0.9, 0.99]
120
+
121
+ scheduler:
122
+ type: MultiStepLR
123
+ milestones: [400000]
124
+ gamma: 0.5
125
+
126
+ total_iter: 400000
127
+ warmup_iter: -1 # no warm up
128
+
129
+ # losses
130
+ pixel_opt:
131
+ type: L1Loss
132
+ loss_weight: 1.0
133
+ reduction: mean
134
+ # perceptual loss (content and style losses)
135
+ perceptual_opt:
136
+ type: PerceptualLoss
137
+ layer_weights:
138
+ # before relu
139
+ 'conv1_2': 0.1
140
+ 'conv2_2': 0.1
141
+ 'conv3_4': 1
142
+ 'conv4_4': 1
143
+ 'conv5_4': 1
144
+ vgg_type: vgg19
145
+ use_input_norm: true
146
+ perceptual_weight: !!float 1.0
147
+ style_weight: 0
148
+ range_norm: false
149
+ criterion: l1
150
+ # gan loss
151
+ gan_opt:
152
+ type: GANLoss
153
+ gan_type: vanilla
154
+ real_label_val: 1.0
155
+ fake_label_val: 0.0
156
+ loss_weight: !!float 1e-1
157
+
158
+ net_d_iters: 1
159
+ net_d_init_iters: 0
160
+
161
+ # Uncomment these for validation
162
+ # validation settings
163
+ # val:
164
+ # val_freq: !!float 5e3
165
+ # save_img: True
166
+
167
+ # metrics:
168
+ # psnr: # metric name
169
+ # type: calculate_psnr
170
+ # crop_border: 4
171
+ # test_y_channel: false
172
+
173
+ # logging settings
174
+ logger:
175
+ print_freq: 100
176
+ save_checkpoint_freq: !!float 5e3
177
+ use_tb_logger: true
178
+ wandb:
179
+ project: ~
180
+ resume_id: ~
181
+
182
+ # dist training settings
183
+ dist_params:
184
+ backend: nccl
185
+ port: 29500
options/train_realesrnet_x2plus.yml ADDED
@@ -0,0 +1,145 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRNetx2plus_1000k_B12G4
3
+ model_type: RealESRNetModel
4
+ scale: 2
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRNetModel ----------------- #
9
+ gt_usm: True # USM the ground-truth
10
+
11
+ # the first degradation process
12
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
13
+ resize_range: [0.15, 1.5]
14
+ gaussian_noise_prob: 0.5
15
+ noise_range: [1, 30]
16
+ poisson_scale_range: [0.05, 3]
17
+ gray_noise_prob: 0.4
18
+ jpeg_range: [30, 95]
19
+
20
+ # the second degradation process
21
+ second_blur_prob: 0.8
22
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
23
+ resize_range2: [0.3, 1.2]
24
+ gaussian_noise_prob2: 0.5
25
+ noise_range2: [1, 25]
26
+ poisson_scale_range2: [0.05, 2.5]
27
+ gray_noise_prob2: 0.4
28
+ jpeg_range2: [30, 95]
29
+
30
+ gt_size: 256
31
+ queue_size: 180
32
+
33
+ # dataset and data loader settings
34
+ datasets:
35
+ train:
36
+ name: DF2K+OST
37
+ type: RealESRGANDataset
38
+ dataroot_gt: datasets/DF2K
39
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
40
+ io_backend:
41
+ type: disk
42
+
43
+ blur_kernel_size: 21
44
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
45
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
46
+ sinc_prob: 0.1
47
+ blur_sigma: [0.2, 3]
48
+ betag_range: [0.5, 4]
49
+ betap_range: [1, 2]
50
+
51
+ blur_kernel_size2: 21
52
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
53
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
54
+ sinc_prob2: 0.1
55
+ blur_sigma2: [0.2, 1.5]
56
+ betag_range2: [0.5, 4]
57
+ betap_range2: [1, 2]
58
+
59
+ final_sinc_prob: 0.8
60
+
61
+ gt_size: 256
62
+ use_hflip: True
63
+ use_rot: False
64
+
65
+ # data loader
66
+ use_shuffle: true
67
+ num_worker_per_gpu: 5
68
+ batch_size_per_gpu: 12
69
+ dataset_enlarge_ratio: 1
70
+ prefetch_mode: ~
71
+
72
+ # Uncomment these for validation
73
+ # val:
74
+ # name: validation
75
+ # type: PairedImageDataset
76
+ # dataroot_gt: path_to_gt
77
+ # dataroot_lq: path_to_lq
78
+ # io_backend:
79
+ # type: disk
80
+
81
+ # network structures
82
+ network_g:
83
+ type: RRDBNet
84
+ num_in_ch: 3
85
+ num_out_ch: 3
86
+ num_feat: 64
87
+ num_block: 23
88
+ num_grow_ch: 32
89
+ scale: 2
90
+
91
+ # path
92
+ path:
93
+ pretrain_network_g: experiments/pretrained_models/RealESRGAN_x4plus.pth
94
+ param_key_g: params_ema
95
+ strict_load_g: False
96
+ resume_state: ~
97
+
98
+ # training settings
99
+ train:
100
+ ema_decay: 0.999
101
+ optim_g:
102
+ type: Adam
103
+ lr: !!float 2e-4
104
+ weight_decay: 0
105
+ betas: [0.9, 0.99]
106
+
107
+ scheduler:
108
+ type: MultiStepLR
109
+ milestones: [1000000]
110
+ gamma: 0.5
111
+
112
+ total_iter: 1000000
113
+ warmup_iter: -1 # no warm up
114
+
115
+ # losses
116
+ pixel_opt:
117
+ type: L1Loss
118
+ loss_weight: 1.0
119
+ reduction: mean
120
+
121
+ # Uncomment these for validation
122
+ # validation settings
123
+ # val:
124
+ # val_freq: !!float 5e3
125
+ # save_img: True
126
+
127
+ # metrics:
128
+ # psnr: # metric name
129
+ # type: calculate_psnr
130
+ # crop_border: 4
131
+ # test_y_channel: false
132
+
133
+ # logging settings
134
+ logger:
135
+ print_freq: 100
136
+ save_checkpoint_freq: !!float 5e3
137
+ use_tb_logger: true
138
+ wandb:
139
+ project: ~
140
+ resume_id: ~
141
+
142
+ # dist training settings
143
+ dist_params:
144
+ backend: nccl
145
+ port: 29500
options/train_realesrnet_x4plus.yml ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # general settings
2
+ name: train_RealESRNetx4plus_1000k_B12G4
3
+ model_type: RealESRNetModel
4
+ scale: 4
5
+ num_gpu: auto # auto: can infer from your visible devices automatically. official: 4 GPUs
6
+ manual_seed: 0
7
+
8
+ # ----------------- options for synthesizing training data in RealESRNetModel ----------------- #
9
+ gt_usm: True # USM the ground-truth
10
+
11
+ # the first degradation process
12
+ resize_prob: [0.2, 0.7, 0.1] # up, down, keep
13
+ resize_range: [0.15, 1.5]
14
+ gaussian_noise_prob: 0.5
15
+ noise_range: [1, 30]
16
+ poisson_scale_range: [0.05, 3]
17
+ gray_noise_prob: 0.4
18
+ jpeg_range: [30, 95]
19
+
20
+ # the second degradation process
21
+ second_blur_prob: 0.8
22
+ resize_prob2: [0.3, 0.4, 0.3] # up, down, keep
23
+ resize_range2: [0.3, 1.2]
24
+ gaussian_noise_prob2: 0.5
25
+ noise_range2: [1, 25]
26
+ poisson_scale_range2: [0.05, 2.5]
27
+ gray_noise_prob2: 0.4
28
+ jpeg_range2: [30, 95]
29
+
30
+ gt_size: 256
31
+ queue_size: 180
32
+
33
+ # dataset and data loader settings
34
+ datasets:
35
+ train:
36
+ name: DF2K+OST
37
+ type: RealESRGANDataset
38
+ dataroot_gt: datasets/DF2K
39
+ meta_info: datasets/DF2K/meta_info/meta_info_DF2Kmultiscale+OST_sub.txt
40
+ io_backend:
41
+ type: disk
42
+
43
+ blur_kernel_size: 21
44
+ kernel_list: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
45
+ kernel_prob: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
46
+ sinc_prob: 0.1
47
+ blur_sigma: [0.2, 3]
48
+ betag_range: [0.5, 4]
49
+ betap_range: [1, 2]
50
+
51
+ blur_kernel_size2: 21
52
+ kernel_list2: ['iso', 'aniso', 'generalized_iso', 'generalized_aniso', 'plateau_iso', 'plateau_aniso']
53
+ kernel_prob2: [0.45, 0.25, 0.12, 0.03, 0.12, 0.03]
54
+ sinc_prob2: 0.1
55
+ blur_sigma2: [0.2, 1.5]
56
+ betag_range2: [0.5, 4]
57
+ betap_range2: [1, 2]
58
+
59
+ final_sinc_prob: 0.8
60
+
61
+ gt_size: 256
62
+ use_hflip: True
63
+ use_rot: False
64
+
65
+ # data loader
66
+ use_shuffle: true
67
+ num_worker_per_gpu: 5
68
+ batch_size_per_gpu: 12
69
+ dataset_enlarge_ratio: 1
70
+ prefetch_mode: ~
71
+
72
+ # Uncomment these for validation
73
+ # val:
74
+ # name: validation
75
+ # type: PairedImageDataset
76
+ # dataroot_gt: path_to_gt
77
+ # dataroot_lq: path_to_lq
78
+ # io_backend:
79
+ # type: disk
80
+
81
+ # network structures
82
+ network_g:
83
+ type: RRDBNet
84
+ num_in_ch: 3
85
+ num_out_ch: 3
86
+ num_feat: 64
87
+ num_block: 23
88
+ num_grow_ch: 32
89
+
90
+ # path
91
+ path:
92
+ pretrain_network_g: experiments/pretrained_models/ESRGAN_SRx4_DF2KOST_official-ff704c30.pth
93
+ param_key_g: params_ema
94
+ strict_load_g: true
95
+ resume_state: ~
96
+
97
+ # training settings
98
+ train:
99
+ ema_decay: 0.999
100
+ optim_g:
101
+ type: Adam
102
+ lr: !!float 2e-4
103
+ weight_decay: 0
104
+ betas: [0.9, 0.99]
105
+
106
+ scheduler:
107
+ type: MultiStepLR
108
+ milestones: [1000000]
109
+ gamma: 0.5
110
+
111
+ total_iter: 1000000
112
+ warmup_iter: -1 # no warm up
113
+
114
+ # losses
115
+ pixel_opt:
116
+ type: L1Loss
117
+ loss_weight: 1.0
118
+ reduction: mean
119
+
120
+ # Uncomment these for validation
121
+ # validation settings
122
+ # val:
123
+ # val_freq: !!float 5e3
124
+ # save_img: True
125
+
126
+ # metrics:
127
+ # psnr: # metric name
128
+ # type: calculate_psnr
129
+ # crop_border: 4
130
+ # test_y_channel: false
131
+
132
+ # logging settings
133
+ logger:
134
+ print_freq: 100
135
+ save_checkpoint_freq: !!float 5e3
136
+ use_tb_logger: true
137
+ wandb:
138
+ project: ~
139
+ resume_id: ~
140
+
141
+ # dist training settings
142
+ dist_params:
143
+ backend: nccl
144
+ port: 29500