Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/python | |
# -*- encoding: utf-8 -*- | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import numpy as np | |
class OhemCELoss(nn.Module): | |
def __init__(self, thresh, n_min, ignore_lb=255, *args, **kwargs): | |
super(OhemCELoss, self).__init__() | |
self.thresh = -torch.log(torch.tensor(thresh, dtype=torch.float)).cuda() | |
self.n_min = n_min | |
self.ignore_lb = ignore_lb | |
self.criteria = nn.CrossEntropyLoss(ignore_index=ignore_lb, reduction='none') | |
def forward(self, logits, labels): | |
N, C, H, W = logits.size() | |
loss = self.criteria(logits, labels).view(-1) | |
loss, _ = torch.sort(loss, descending=True) | |
if loss[self.n_min] > self.thresh: | |
loss = loss[loss>self.thresh] | |
else: | |
loss = loss[:self.n_min] | |
return torch.mean(loss) | |
class SoftmaxFocalLoss(nn.Module): | |
def __init__(self, gamma, ignore_lb=255, *args, **kwargs): | |
super(SoftmaxFocalLoss, self).__init__() | |
self.gamma = gamma | |
self.nll = nn.NLLLoss(ignore_index=ignore_lb) | |
def forward(self, logits, labels): | |
scores = F.softmax(logits, dim=1) | |
factor = torch.pow(1.-scores, self.gamma) | |
log_score = F.log_softmax(logits, dim=1) | |
log_score = factor * log_score | |
loss = self.nll(log_score, labels) | |
return loss | |
if __name__ == '__main__': | |
torch.manual_seed(15) | |
criteria1 = OhemCELoss(thresh=0.7, n_min=16*20*20//16).cuda() | |
criteria2 = OhemCELoss(thresh=0.7, n_min=16*20*20//16).cuda() | |
net1 = nn.Sequential( | |
nn.Conv2d(3, 19, kernel_size=3, stride=2, padding=1), | |
) | |
net1.cuda() | |
net1.train() | |
net2 = nn.Sequential( | |
nn.Conv2d(3, 19, kernel_size=3, stride=2, padding=1), | |
) | |
net2.cuda() | |
net2.train() | |
with torch.no_grad(): | |
inten = torch.randn(16, 3, 20, 20).cuda() | |
lbs = torch.randint(0, 19, [16, 20, 20]).cuda() | |
lbs[1, :, :] = 255 | |
logits1 = net1(inten) | |
logits1 = F.interpolate(logits1, inten.size()[2:], mode='bilinear') | |
logits2 = net2(inten) | |
logits2 = F.interpolate(logits2, inten.size()[2:], mode='bilinear') | |
loss1 = criteria1(logits1, lbs) | |
loss2 = criteria2(logits2, lbs) | |
loss = loss1 + loss2 | |
print(loss.detach().cpu()) | |
loss.backward() | |