Applio-Inference / demucs /pretrained.py
r3gm's picture
Upload 288 files
7bc29af
raw
history blame
3.14 kB
# Copyright (c) Facebook, Inc. and its affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# author: adefossez
import logging
from diffq import DiffQuantizer
import torch.hub
from .model import Demucs
from .tasnet import ConvTasNet
from .utils import set_state
logger = logging.getLogger(__name__)
ROOT = "https://dl.fbaipublicfiles.com/demucs/v3.0/"
PRETRAINED_MODELS = {
'demucs': 'e07c671f',
'demucs48_hq': '28a1282c',
'demucs_extra': '3646af93',
'demucs_quantized': '07afea75',
'tasnet': 'beb46fac',
'tasnet_extra': 'df3777b2',
'demucs_unittest': '09ebc15f',
}
SOURCES = ["drums", "bass", "other", "vocals"]
def get_url(name):
sig = PRETRAINED_MODELS[name]
return ROOT + name + "-" + sig[:8] + ".th"
def is_pretrained(name):
return name in PRETRAINED_MODELS
def load_pretrained(name):
if name == "demucs":
return demucs(pretrained=True)
elif name == "demucs48_hq":
return demucs(pretrained=True, hq=True, channels=48)
elif name == "demucs_extra":
return demucs(pretrained=True, extra=True)
elif name == "demucs_quantized":
return demucs(pretrained=True, quantized=True)
elif name == "demucs_unittest":
return demucs_unittest(pretrained=True)
elif name == "tasnet":
return tasnet(pretrained=True)
elif name == "tasnet_extra":
return tasnet(pretrained=True, extra=True)
else:
raise ValueError(f"Invalid pretrained name {name}")
def _load_state(name, model, quantizer=None):
url = get_url(name)
state = torch.hub.load_state_dict_from_url(url, map_location='cpu', check_hash=True)
set_state(model, quantizer, state)
if quantizer:
quantizer.detach()
def demucs_unittest(pretrained=True):
model = Demucs(channels=4, sources=SOURCES)
if pretrained:
_load_state('demucs_unittest', model)
return model
def demucs(pretrained=True, extra=False, quantized=False, hq=False, channels=64):
if not pretrained and (extra or quantized or hq):
raise ValueError("if extra or quantized is True, pretrained must be True.")
model = Demucs(sources=SOURCES, channels=channels)
if pretrained:
name = 'demucs'
if channels != 64:
name += str(channels)
quantizer = None
if sum([extra, quantized, hq]) > 1:
raise ValueError("Only one of extra, quantized, hq, can be True.")
if quantized:
quantizer = DiffQuantizer(model, group_size=8, min_size=1)
name += '_quantized'
if extra:
name += '_extra'
if hq:
name += '_hq'
_load_state(name, model, quantizer)
return model
def tasnet(pretrained=True, extra=False):
if not pretrained and extra:
raise ValueError("if extra is True, pretrained must be True.")
model = ConvTasNet(X=10, sources=SOURCES)
if pretrained:
name = 'tasnet'
if extra:
name = 'tasnet_extra'
_load_state(name, model)
return model