new_streamlit / app.py
JUNGU's picture
Update app.py
fbcf999
from dataclasses import dataclass
from typing import Literal
import streamlit as st
from langchain import OpenAI
from langchain.callbacks import get_openai_callback
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationSummaryMemory
import streamlit.components.v1 as components
import streamlit as st
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import PyPDFLoader
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.embeddings.cohere import CohereEmbeddings
from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores.elastic_vector_search import ElasticVectorSearch
from langchain.vectorstores import Chroma
from langchain.chat_models import ChatOpenAI
from langchain.chains import RetrievalQAWithSourcesChain
from dotenv import load_dotenv
import os
import openai
import time
load_dotenv()
os.environ["OPENAI_API_KEY"] = os.environ['my_secret']
@dataclass
class Message:
"""Class for keeping track of a chat message."""
origin: Literal["human", "ai"]
message: str
def load_css():
with open("styles.css", "r") as f:
css = f"<style>{f.read()}</style>"
st.markdown(css, unsafe_allow_html=True)
def initialize_session_state():
if "history" not in st.session_state:
st.session_state.history = [Message("ai", "์•ˆ๋…•ํ•˜์„ธ์š”, ์–ด๋–ป๊ฒŒ ๋„์™€๋“œ๋ฆด๊นŒ์š”?")]
if "token_count" not in st.session_state:
st.session_state.token_count = 0
if 'chain' not in st.session_state:
llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
loader = PyPDFLoader("/home/user/app/docs.pdf")
documents = loader.load()
text_splitter = CharacterTextSplitter(chunk_size=800, chunk_overlap=0)
texts = text_splitter.split_documents(documents)
embeddings = OpenAIEmbeddings()
vector_store = Chroma.from_documents(texts, embeddings)
retriever = vector_store.as_retriever(search_kwargs={"k": 3})
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
system_template="""You act like a successful teacher. Talk to students about the career path of a teacher.
Never reveal that it is an AI. Use the following pieces of context to answer the users question shortly.
Given the following summaries of a long document and a question, create a final answer.
If someone talks about something that isn't job-related, just say "I don't know" and don't try to make up an answer.
If you don't know the answer, just say that "I don't know", don't try to make up an answer.
----------------
{summaries}
You MUST answer in Korean and in Markdown format"""
messages = [
SystemMessagePromptTemplate.from_template(system_template),
HumanMessagePromptTemplate.from_template("{question}")
]
prompt = ChatPromptTemplate.from_messages(messages)
chain_type_kwargs = {"prompt": prompt}
st.session_state['chain'] = RetrievalQAWithSourcesChain.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
chain_type_kwargs=chain_type_kwargs,
reduce_k_below_max_tokens=True,
verbose=True,
)
def generate_response(user_input):
result = st.session_state['chain'](user_input)
bot_message = result['answer']
return bot_message
def on_click_callback():
with get_openai_callback() as cb:
human_prompt = st.session_state.human_prompt
llm_response = generate_response(human_prompt)
st.session_state.history.append(
Message("human", human_prompt)
)
st.session_state.history.append(
Message("ai", llm_response)
)
st.session_state.token_count += cb.total_tokens
load_css()
initialize_session_state()
st.title("๊ต์‚ฌ์™€ ์ง„๋กœ์ƒ๋‹ด์„ ํ•ด๋ณด์„ธ์š”, \n ์‹ค์ œ ์ธํ„ฐ๋ทฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•ฉ๋‹ˆ๋‹ค. ๐Ÿค–")
chat_placeholder = st.container()
prompt_placeholder = st.form("chat-form")
credit_card_placeholder = st.empty()
with chat_placeholder:
for chat in st.session_state.history[:-1]:
div = f"""
<div class="chat-row
{'' if chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="https://cdn-icons-png.flaticon.com/{
'/512/3058/3058838.png' if chat.origin == 'ai'
else '512/1177/1177568.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if chat.origin == 'ai' else 'human-bubble'}">
&#8203;{chat.message}
</div>
</div>
"""
st.markdown(div, unsafe_allow_html=True)
if st.session_state.history:
last_chat = st.session_state.history[-1]
div_start = f"""
<div class="chat-row
{'' if last_chat.origin == 'ai' else 'row-reverse'}">
<img class="chat-icon" src="https://cdn-icons-png.flaticon.com/{
'/512/3058/3058838.png' if last_chat.origin == 'ai'
else '512/1177/1177568.png'}"
width=32 height=32>
<div class="chat-bubble
{'ai-bubble' if last_chat.origin == 'ai' else 'human-bubble'}">
&#8203;"""
div_end = """
</div>
</div>
"""
new_placeholder = st.empty()
for j in range(len(last_chat.message)):
new_placeholder.markdown(div_start + last_chat.message[:j+1] + div_end, unsafe_allow_html=True)
time.sleep(0.05)
for _ in range(3):
st.markdown("")
with prompt_placeholder:
st.markdown("**Chat**")
cols = st.columns((6, 1))
cols[0].text_input(
"Chat",
value="๊ต์‚ฌ๊ฐ€ ๋˜๋ ค๋ฉด ๋ฌด์—‡์„ ํ•ด์•ผ ํ•˜๋‚˜์š”?",
label_visibility="collapsed",
key="human_prompt",
)
cols[1].form_submit_button(
"Submit",
type="primary",
on_click=on_click_callback,
)
# credit_card_placeholder.caption(f"""
# Used {st.session_state.token_count} tokens \n
# Debug Langchain conversation:
# {st.session_state.chain.memory.buffer}
# """)
components.html("""
<script>
const streamlitDoc = window.parent.document;
const buttons = Array.from(
streamlitDoc.querySelectorAll('.stButton > button')
);
const submitButton = buttons.find(
el => el.innerText === 'Submit'
);
streamlitDoc.addEventListener('keydown', function(e) {
switch (e.key) {
case 'Enter':
submitButton.click();
break;
}
});
</script>
""",
height=0,
width=0,
)