Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from transformers import ( | |
AutoModelForCausalLM, | |
AutoTokenizer, | |
TextIteratorStreamer, | |
BitsAndBytesConfig, | |
) | |
import os | |
from threading import Thread | |
import spaces | |
import time | |
token = os.environ["HF_TOKEN"] | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, bnb_4bit_compute_dtype=torch.float16 | |
) | |
model = AutoModelForCausalLM.from_pretrained( | |
"google/gemma-1.1-7b-it", quantization_config=quantization_config, token=token | |
) | |
tok = AutoTokenizer.from_pretrained("google/gemma-1.1-7b-it", token=token) | |
if torch.cuda.is_available(): | |
device = torch.device("cuda") | |
print(f"Using GPU: {torch.cuda.get_device_name(device)}") | |
else: | |
device = torch.device("cpu") | |
print("Using CPU") | |
# model = model.to(device) | |
# Dispatch Errors | |
def chat(message, history, temperature, top_p, top_k, max_tokens): | |
start_time = time.time() | |
chat = [] | |
for item in history: | |
chat.append({"role": "user", "content": item[0]}) | |
if item[1] is not None: | |
chat.append({"role": "assistant", "content": item[1]}) | |
chat.append({"role": "user", "content": message}) | |
messages = tok.apply_chat_template(chat, tokenize=False, add_generation_prompt=True) | |
model_inputs = tok([messages], return_tensors="pt").to(device) | |
streamer = TextIteratorStreamer( | |
tok, timeout=10.0, skip_prompt=True, skip_special_tokens=True | |
) | |
generate_kwargs = dict( | |
model_inputs, | |
streamer=streamer, | |
max_new_tokens=max_tokens, | |
do_sample=True, | |
top_p=top_p, | |
top_k=top_k, | |
temperature=temperature, | |
) | |
t = Thread(target=model.generate, kwargs=generate_kwargs) | |
t.start() | |
partial_text = "" | |
first_token_time = None | |
for new_text in streamer: | |
if not first_token_time: | |
first_token_time = time.time() - start_time | |
partial_text += new_text | |
yield partial_text | |
total_time = time.time() - start_time | |
tokens = len(tok.tokenize(partial_text)) | |
tokens_per_second = tokens / total_time if total_time > 0 else 0 | |
timing_info = f"\n\nTime taken to first token: {first_token_time:.2f} seconds\nTokens per second: {tokens_per_second:.2f}" | |
gr.Info(timing_info) | |
yield partial_text | |
demo = gr.ChatInterface( | |
fn=chat, | |
examples=[["Write me a poem about Machine Learning."]], | |
# multimodal=True, | |
additional_inputs_accordion=gr.Accordion( | |
label="⚙️ Parameters", open=False, render=False | |
), | |
additional_inputs=[ | |
gr.Slider( | |
minimum=0, maximum=1, step=0.1, value=0.9, label="Temperature", render=False | |
), | |
gr.Slider( | |
minimum=0, maximum=1, step=0.1, value=0.95, label="top_p", render=False | |
), | |
gr.Slider( | |
minimum=1, maximum=10000, step=5, value=1000, label="top_k", render=False | |
), | |
gr.Slider( | |
minimum=128, | |
maximum=4096, | |
step=1, | |
value=1024, | |
label="Max new tokens", | |
render=False, | |
), | |
], | |
stop_btn="Stop Generation", | |
title="Chat With LLMs", | |
) | |
demo.launch() | |