Metric3D / app.py
JUGGHM's picture
Update app.py
4b543c3 verified
raw
history blame
4.94 kB
import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp
os.system('nvidia-smi')
import cupy
import sys
CODE_SPACE=os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
try:
from mmcv.utils import Config, DictAction
except:
from mmengine import Config, DictAction
from mono.utils.logger import setup_logger
import glob
from mono.utils.comm import init_env
from mono.model.monodepth_model import get_configured_monodepth_model
from mono.utils.running import load_ckpt
from mono.utils.do_test import transform_test_data_scalecano, get_prediction
from mono.utils.custom_data import load_from_annos, load_data
from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud
from mono.utils.transform import gray_to_colormap
from mono.utils.visualization import vis_surface_normal
import gradio as gr
#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1437622368342-7a3d73a34c8f', 'turtle.jpg')
#torch.hub.download_url_to_file('https://images.unsplash.com/photo-1519066629447-267fffa62d4b', 'lions.jpg')
cfg_large = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.large.py')
model_large = get_configured_monodepth_model(cfg_large, )
model_large, _, _, _ = load_ckpt('./weight/metric_depth_vit_large_800k.pth', model_large, strict_match=False)
model_large.eval()
cfg_small = Config.fromfile('./mono/configs/HourglassDecoder/vit.raft5.small.py')
model_small = get_configured_monodepth_model(cfg_small, )
model_small, _, _, _ = load_ckpt('./weight/metric_depth_vit_small_800k.pth', model_small, strict_match=False)
model_small.eval()
device = "cuda"
model_large.to(device)
model_small.to(device)
def depth_normal(img, model_selection="vit-small"):
if model_selection == "vit-small":
model = model_small
cfg = cfg_small
elif model_selection == "vit-large":
model = model_large
cfg = cfg_large
else:
raise NotImplementedError
cv_image = np.array(img)
img = cv2.cvtColor(cv_image, cv2.COLOR_BGR2RGB)
intrinsic = [1000.0, 1000.0, img.shape[1]/2, img.shape[0]/2]
rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(img, intrinsic, cfg.data_basic)
with torch.no_grad():
pred_depth, pred_depth_scale, scale, output = get_prediction(
model = model,
input = rgb_input,
cam_model = cam_models_stacks,
pad_info = pad,
scale_info = label_scale_factor,
gt_depth = None,
normalize_scale = cfg.data_basic.depth_range[1],
ori_shape=[img.shape[0], img.shape[1]],
)
pred_normal = output['normal_out_list'][0][:, :3, :, :]
H, W = pred_normal.shape[2:]
pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]
pred_depth = pred_depth.squeeze().cpu().numpy()
pred_depth[pred_depth<0] = 0
pred_color = gray_to_colormap(pred_depth)
pred_normal = pred_normal.squeeze()
if pred_normal.size(0) == 3:
pred_normal = pred_normal.permute(1,2,0)
pred_color_normal = vis_surface_normal(pred_normal)
##formatted = (output * 255 / np.max(output)).astype('uint8')
img = Image.fromarray(pred_color)
img_normal = Image.fromarray(pred_color_normal)
return img, img_normal
#inputs = gr.inputs.Image(type='pil', label="Original Image")
#depth = gr.outputs.Image(type="pil",label="Output Depth")
#normal = gr.outputs.Image(type="pil",label="Output Normal")
title = "Metric3D"
description = "Gradio demo for Metric3D v1/v2 which takes in a single image for computing metric depth and surface normal. To use it, simply upload your image, or click one of the examples to load them. Learn more from our paper linked below."
article = "<p style='text-align: center'><a href='https://arxiv.org/pdf/2307.10984.pdf'>Metric3D: Towards Zero-shot Metric 3D Prediction from A Single Image</a> | <a href='https://github.com/YvanYin/Metric3D'>Github Repo</a></p>"
examples = [
#["turtle.jpg"],
#["lions.jpg"]
#["files/gundam.jpg"],
["files/museum.jpg"],
["files/terra.jpg"],
["files/underwater.jpg"],
["files/venue.jpg"]
]
gr.Interface(
depth_normal,
inputs=[gr.Image(type='pil', label="Original Image"), gr.Dropdown(["vit-small", "vit-large"], label="Model", info="Will support more models later!")],
outputs=[gr.Image(type="pil",label="Output Depth"), gr.Image(type="pil",label="Output Normal")],
title=title, description=description, article=article, examples=examples, analytics_enabled=False).launch()