Spaces:
Running
on
T4
Running
on
T4
import torch | |
import torch.nn.functional as F | |
import logging | |
import os | |
import os.path as osp | |
from mono.utils.avg_meter import MetricAverageMeter | |
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs | |
import cv2 | |
from tqdm import tqdm | |
import numpy as np | |
from PIL import Image | |
import matplotlib.pyplot as plt | |
from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud | |
def to_cuda(data: dict): | |
for k, v in data.items(): | |
if isinstance(v, torch.Tensor): | |
data[k] = v.cuda(non_blocking=True) | |
if isinstance(v, list) and len(v)>=1 and isinstance(v[0], torch.Tensor): | |
for i, l_i in enumerate(v): | |
data[k][i] = l_i.cuda(non_blocking=True) | |
return data | |
def align_scale(pred: torch.tensor, target: torch.tensor): | |
mask = target > 0 | |
if torch.sum(mask) > 10: | |
scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8) | |
else: | |
scale = 1 | |
pred_scaled = pred * scale | |
return pred_scaled, scale | |
def align_scale_shift(pred: torch.tensor, target: torch.tensor): | |
mask = target > 0 | |
target_mask = target[mask].cpu().numpy() | |
pred_mask = pred[mask].cpu().numpy() | |
if torch.sum(mask) > 10: | |
scale, shift = np.polyfit(pred_mask, target_mask, deg=1) | |
if scale < 0: | |
scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8) | |
shift = 0 | |
else: | |
scale = 1 | |
shift = 0 | |
pred = pred * scale + shift | |
return pred, scale | |
def align_scale_shift_numpy(pred: np.array, target: np.array): | |
mask = target > 0 | |
target_mask = target[mask] | |
pred_mask = pred[mask] | |
if np.sum(mask) > 10: | |
scale, shift = np.polyfit(pred_mask, target_mask, deg=1) | |
if scale < 0: | |
scale = np.median(target[mask]) / (np.median(pred[mask]) + 1e-8) | |
shift = 0 | |
else: | |
scale = 1 | |
shift = 0 | |
pred = pred * scale + shift | |
return pred, scale | |
def build_camera_model(H : int, W : int, intrinsics : list) -> np.array: | |
""" | |
Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map. | |
""" | |
fx, fy, u0, v0 = intrinsics | |
f = (fx + fy) / 2.0 | |
# principle point location | |
x_row = np.arange(0, W).astype(np.float32) | |
x_row_center_norm = (x_row - u0) / W | |
x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W] | |
y_col = np.arange(0, H).astype(np.float32) | |
y_col_center_norm = (y_col - v0) / H | |
y_center = np.tile(y_col_center_norm, (W, 1)).T # [H, W] | |
# FoV | |
fov_x = np.arctan(x_center / (f / W)) | |
fov_y = np.arctan(y_center / (f / H)) | |
cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2) | |
return cam_model | |
def resize_for_input(image, output_shape, intrinsic, canonical_shape, to_canonical_ratio): | |
""" | |
Resize the input. | |
Resizing consists of two processed, i.e. 1) to the canonical space (adjust the camera model); 2) resize the image while the camera model holds. Thus the | |
label will be scaled with the resize factor. | |
""" | |
padding = [123.675, 116.28, 103.53] | |
h, w, _ = image.shape | |
resize_ratio_h = output_shape[0] / canonical_shape[0] | |
resize_ratio_w = output_shape[1] / canonical_shape[1] | |
to_scale_ratio = min(resize_ratio_h, resize_ratio_w) | |
resize_ratio = to_canonical_ratio * to_scale_ratio | |
reshape_h = int(resize_ratio * h) | |
reshape_w = int(resize_ratio * w) | |
pad_h = max(output_shape[0] - reshape_h, 0) | |
pad_w = max(output_shape[1] - reshape_w, 0) | |
pad_h_half = int(pad_h / 2) | |
pad_w_half = int(pad_w / 2) | |
# resize | |
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR) | |
# padding | |
image = cv2.copyMakeBorder( | |
image, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=padding) | |
# Resize, adjust principle point | |
intrinsic[2] = intrinsic[2] * to_scale_ratio | |
intrinsic[3] = intrinsic[3] * to_scale_ratio | |
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic) | |
cam_model = cv2.copyMakeBorder( | |
cam_model, | |
pad_h_half, | |
pad_h - pad_h_half, | |
pad_w_half, | |
pad_w - pad_w_half, | |
cv2.BORDER_CONSTANT, | |
value=-1) | |
pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half] | |
label_scale_factor=1/to_scale_ratio | |
return image, cam_model, pad, label_scale_factor | |
def get_prediction( | |
model: torch.nn.Module, | |
input: torch.tensor, | |
cam_model: torch.tensor, | |
pad_info: torch.tensor, | |
scale_info: torch.tensor, | |
gt_depth: torch.tensor, | |
normalize_scale: float, | |
ori_shape: list=[], | |
): | |
data = dict( | |
input=input, | |
cam_model=cam_model, | |
) | |
#pred_depth, confidence, output_dict = model.module.inference(data) | |
pred_depth, confidence, output_dict = model.inference(data) | |
pred_depth = pred_depth | |
pred_depth = pred_depth.squeeze() | |
pred_depth = pred_depth[pad_info[0] : pred_depth.shape[0] - pad_info[1], pad_info[2] : pred_depth.shape[1] - pad_info[3]] | |
if gt_depth is not None: | |
resize_shape = gt_depth.shape | |
elif ori_shape != []: | |
resize_shape = ori_shape | |
else: | |
resize_shape = pred_depth.shape | |
pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], resize_shape, mode='bilinear').squeeze() # to original size | |
pred_depth = pred_depth * normalize_scale / scale_info | |
if gt_depth is not None: | |
pred_depth_scale, scale = align_scale(pred_depth, gt_depth) | |
else: | |
pred_depth_scale = None | |
scale = None | |
return pred_depth, pred_depth_scale, scale, output_dict | |
def transform_test_data_scalecano(rgb, intrinsic, data_basic): | |
""" | |
Pre-process the input for forwarding. Employ `label scale canonical transformation.' | |
Args: | |
rgb: input rgb image. [H, W, 3] | |
intrinsic: camera intrinsic parameter, [fx, fy, u0, v0] | |
data_basic: predefined canonical space in configs. | |
""" | |
canonical_space = data_basic['canonical_space'] | |
forward_size = data_basic.crop_size | |
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None] | |
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None] | |
# BGR to RGB | |
rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB) | |
ori_h, ori_w, _ = rgb.shape | |
ori_focal = (intrinsic[0] + intrinsic[1]) / 2 | |
canonical_focal = canonical_space['focal_length'] | |
cano_label_scale_ratio = canonical_focal / ori_focal | |
canonical_intrinsic = [ | |
intrinsic[0] * cano_label_scale_ratio, | |
intrinsic[1] * cano_label_scale_ratio, | |
intrinsic[2], | |
intrinsic[3], | |
] | |
# resize | |
rgb, cam_model, pad, resize_label_scale_ratio = resize_for_input(rgb, forward_size, canonical_intrinsic, [ori_h, ori_w], 1.0) | |
# label scale factor | |
label_scale_factor = cano_label_scale_ratio * resize_label_scale_ratio | |
rgb = torch.from_numpy(rgb.transpose((2, 0, 1))).float() | |
rgb = torch.div((rgb - mean), std) | |
rgb = rgb[None, :, :, :].cuda() | |
#rgb = rgb[None, :, :, :] | |
cam_model = torch.from_numpy(cam_model.transpose((2, 0, 1))).float() | |
cam_model = cam_model[None, :, :, :].cuda() | |
#cam_model = cam_model[None, :, :, :] | |
cam_model_stacks = [ | |
torch.nn.functional.interpolate(cam_model, size=(cam_model.shape[2]//i, cam_model.shape[3]//i), mode='bilinear', align_corners=False) | |
for i in [2, 4, 8, 16, 32] | |
] | |
return rgb, cam_model_stacks, pad, label_scale_factor | |
def do_scalecano_test_with_custom_data( | |
model: torch.nn.Module, | |
cfg: dict, | |
test_data: list, | |
logger: logging.RootLogger, | |
is_distributed: bool = True, | |
local_rank: int = 0, | |
): | |
show_dir = cfg.show_dir | |
save_interval = 1 | |
save_imgs_dir = show_dir + '/vis' | |
os.makedirs(save_imgs_dir, exist_ok=True) | |
save_pcd_dir = show_dir + '/pcd' | |
os.makedirs(save_pcd_dir, exist_ok=True) | |
normalize_scale = cfg.data_basic.depth_range[1] | |
dam = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3']) | |
dam_median = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3']) | |
dam_global = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3']) | |
for i, an in tqdm(enumerate(test_data)): | |
#for i, an in enumerate(test_data): | |
print(an['rgb']) | |
rgb_origin = cv2.imread(an['rgb'])[:, :, ::-1].copy() | |
if an['depth'] is not None: | |
gt_depth = cv2.imread(an['depth'], -1) | |
gt_depth_scale = an['depth_scale'] | |
gt_depth = gt_depth / gt_depth_scale | |
gt_depth_flag = True | |
else: | |
gt_depth = None | |
gt_depth_flag = False | |
intrinsic = an['intrinsic'] | |
if intrinsic is None: | |
intrinsic = [1000.0, 1000.0, rgb_origin.shape[1]/2, rgb_origin.shape[0]/2] | |
# intrinsic = [542.0, 542.0, 963.706, 760.199] | |
print(intrinsic) | |
rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(rgb_origin, intrinsic, cfg.data_basic) | |
pred_depth, pred_depth_scale, scale, output = get_prediction( | |
model = model, | |
input = rgb_input, | |
cam_model = cam_models_stacks, | |
pad_info = pad, | |
scale_info = label_scale_factor, | |
gt_depth = None, | |
normalize_scale = normalize_scale, | |
ori_shape=[rgb_origin.shape[0], rgb_origin.shape[1]], | |
) | |
pred_depth = (pred_depth > 0) * (pred_depth < 300) * pred_depth | |
if gt_depth_flag: | |
pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], (gt_depth.shape[0], gt_depth.shape[1]), mode='bilinear').squeeze() # to original size | |
#gt_depth = torch.from_numpy(gt_depth).cuda() | |
gt_depth = torch.from_numpy(gt_depth) | |
pred_depth_median = pred_depth * gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median() | |
pred_global, _ = align_scale_shift(pred_depth, gt_depth) | |
mask = (gt_depth > 1e-8) | |
dam.update_metrics_gpu(pred_depth, gt_depth, mask, is_distributed) | |
dam_median.update_metrics_gpu(pred_depth_median, gt_depth, mask, is_distributed) | |
dam_global.update_metrics_gpu(pred_global, gt_depth, mask, is_distributed) | |
print(gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median(), ) | |
if i % save_interval == 0: | |
os.makedirs(osp.join(save_imgs_dir, an['folder']), exist_ok=True) | |
rgb_torch = torch.from_numpy(rgb_origin).to(pred_depth.device).permute(2, 0, 1) | |
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None].to(rgb_torch.device) | |
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None].to(rgb_torch.device) | |
rgb_torch = torch.div((rgb_torch - mean), std) | |
save_val_imgs( | |
i, | |
pred_depth, | |
gt_depth if gt_depth is not None else torch.ones_like(pred_depth, device=pred_depth.device), | |
rgb_torch, | |
osp.join(an['folder'], an['filename']), | |
save_imgs_dir, | |
) | |
#save_raw_imgs(pred_depth.detach().cpu().numpy(), rgb_torch, osp.join(an['folder'], an['filename']), save_imgs_dir, 1000.0) | |
# pcd | |
pred_depth = pred_depth.detach().cpu().numpy() | |
#pcd = reconstruct_pcd(pred_depth, intrinsic[0], intrinsic[1], intrinsic[2], intrinsic[3]) | |
#os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True) | |
#save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4]+'.ply')) | |
if an['intrinsic'] == None: | |
#for r in [0.9, 1.0, 1.1]: | |
for r in [1.0]: | |
#for f in [600, 800, 1000, 1250, 1500]: | |
for f in [1000]: | |
pcd = reconstruct_pcd(pred_depth, f * r, f * (2-r), intrinsic[2], intrinsic[3]) | |
fstr = '_fx_' + str(int(f * r)) + '_fy_' + str(int(f * (2-r))) | |
os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True) | |
save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4] + fstr +'.ply')) | |
if "normal_out_list" in output.keys(): | |
normal_out_list = output['normal_out_list'] | |
pred_normal = normal_out_list[0][:, :3, :, :] # (B, 3, H, W) | |
H, W = pred_normal.shape[2:] | |
pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]] | |
gt_normal = None | |
#if gt_normal_flag: | |
if False: | |
pred_normal = torch.nn.functional.interpolate(pred_normal, size=gt_normal.shape[2:], mode='bilinear', align_corners=True) | |
gt_normal = cv2.imread(norm_path) | |
gt_normal = cv2.cvtColor(gt_normal, cv2.COLOR_BGR2RGB) | |
gt_normal = np.array(gt_normal).astype(np.uint8) | |
gt_normal = ((gt_normal.astype(np.float32) / 255.0) * 2.0) - 1.0 | |
norm_valid_mask = (np.linalg.norm(gt_normal, axis=2, keepdims=True) > 0.5) | |
gt_normal = gt_normal * norm_valid_mask | |
gt_normal_mask = ~torch.all(gt_normal == 0, dim=1, keepdim=True) | |
dam.update_normal_metrics_gpu(pred_normal, gt_normal, gt_normal_mask, cfg.distributed)# save valiad normal | |
if i % save_interval == 0: | |
save_normal_val_imgs(iter, | |
pred_normal, | |
gt_normal if gt_normal is not None else torch.ones_like(pred_normal, device=pred_normal.device), | |
rgb_torch, # data['input'], | |
osp.join(an['folder'], 'normal_'+an['filename']), | |
save_imgs_dir, | |
) | |
#if gt_depth_flag: | |
if False: | |
eval_error = dam.get_metrics() | |
print('w/o match :', eval_error) | |
eval_error_median = dam_median.get_metrics() | |
print('median match :', eval_error_median) | |
eval_error_global = dam_global.get_metrics() | |
print('global match :', eval_error_global) | |
else: | |
print('missing gt_depth, only save visualizations...') | |