Metric3D / mono /utils /do_test.py
JUGGHM's picture
Update mono/utils/do_test.py
af0602e verified
raw
history blame
14.7 kB
import torch
import torch.nn.functional as F
import logging
import os
import os.path as osp
from mono.utils.avg_meter import MetricAverageMeter
from mono.utils.visualization import save_val_imgs, create_html, save_raw_imgs, save_normal_val_imgs
import cv2
from tqdm import tqdm
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
from mono.utils.unproj_pcd import reconstruct_pcd, save_point_cloud
def to_cuda(data: dict):
for k, v in data.items():
if isinstance(v, torch.Tensor):
data[k] = v.cuda(non_blocking=True)
if isinstance(v, list) and len(v)>=1 and isinstance(v[0], torch.Tensor):
for i, l_i in enumerate(v):
data[k][i] = l_i.cuda(non_blocking=True)
return data
def align_scale(pred: torch.tensor, target: torch.tensor):
mask = target > 0
if torch.sum(mask) > 10:
scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
else:
scale = 1
pred_scaled = pred * scale
return pred_scaled, scale
def align_scale_shift(pred: torch.tensor, target: torch.tensor):
mask = target > 0
target_mask = target[mask].cpu().numpy()
pred_mask = pred[mask].cpu().numpy()
if torch.sum(mask) > 10:
scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
if scale < 0:
scale = torch.median(target[mask]) / (torch.median(pred[mask]) + 1e-8)
shift = 0
else:
scale = 1
shift = 0
pred = pred * scale + shift
return pred, scale
def align_scale_shift_numpy(pred: np.array, target: np.array):
mask = target > 0
target_mask = target[mask]
pred_mask = pred[mask]
if np.sum(mask) > 10:
scale, shift = np.polyfit(pred_mask, target_mask, deg=1)
if scale < 0:
scale = np.median(target[mask]) / (np.median(pred[mask]) + 1e-8)
shift = 0
else:
scale = 1
shift = 0
pred = pred * scale + shift
return pred, scale
def build_camera_model(H : int, W : int, intrinsics : list) -> np.array:
"""
Encode the camera intrinsic parameters (focal length and principle point) to a 4-channel map.
"""
fx, fy, u0, v0 = intrinsics
f = (fx + fy) / 2.0
# principle point location
x_row = np.arange(0, W).astype(np.float32)
x_row_center_norm = (x_row - u0) / W
x_center = np.tile(x_row_center_norm, (H, 1)) # [H, W]
y_col = np.arange(0, H).astype(np.float32)
y_col_center_norm = (y_col - v0) / H
y_center = np.tile(y_col_center_norm, (W, 1)).T # [H, W]
# FoV
fov_x = np.arctan(x_center / (f / W))
fov_y = np.arctan(y_center / (f / H))
cam_model = np.stack([x_center, y_center, fov_x, fov_y], axis=2)
return cam_model
def resize_for_input(image, output_shape, intrinsic, canonical_shape, to_canonical_ratio):
"""
Resize the input.
Resizing consists of two processed, i.e. 1) to the canonical space (adjust the camera model); 2) resize the image while the camera model holds. Thus the
label will be scaled with the resize factor.
"""
padding = [123.675, 116.28, 103.53]
h, w, _ = image.shape
resize_ratio_h = output_shape[0] / canonical_shape[0]
resize_ratio_w = output_shape[1] / canonical_shape[1]
to_scale_ratio = min(resize_ratio_h, resize_ratio_w)
resize_ratio = to_canonical_ratio * to_scale_ratio
reshape_h = int(resize_ratio * h)
reshape_w = int(resize_ratio * w)
pad_h = max(output_shape[0] - reshape_h, 0)
pad_w = max(output_shape[1] - reshape_w, 0)
pad_h_half = int(pad_h / 2)
pad_w_half = int(pad_w / 2)
# resize
image = cv2.resize(image, dsize=(reshape_w, reshape_h), interpolation=cv2.INTER_LINEAR)
# padding
image = cv2.copyMakeBorder(
image,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=padding)
# Resize, adjust principle point
intrinsic[2] = intrinsic[2] * to_scale_ratio
intrinsic[3] = intrinsic[3] * to_scale_ratio
cam_model = build_camera_model(reshape_h, reshape_w, intrinsic)
cam_model = cv2.copyMakeBorder(
cam_model,
pad_h_half,
pad_h - pad_h_half,
pad_w_half,
pad_w - pad_w_half,
cv2.BORDER_CONSTANT,
value=-1)
pad=[pad_h_half, pad_h - pad_h_half, pad_w_half, pad_w - pad_w_half]
label_scale_factor=1/to_scale_ratio
return image, cam_model, pad, label_scale_factor
def get_prediction(
model: torch.nn.Module,
input: torch.tensor,
cam_model: torch.tensor,
pad_info: torch.tensor,
scale_info: torch.tensor,
gt_depth: torch.tensor,
normalize_scale: float,
ori_shape: list=[],
):
data = dict(
input=input,
cam_model=cam_model,
)
#pred_depth, confidence, output_dict = model.module.inference(data)
pred_depth, confidence, output_dict = model.inference(data)
pred_depth = pred_depth
pred_depth = pred_depth.squeeze()
pred_depth = pred_depth[pad_info[0] : pred_depth.shape[0] - pad_info[1], pad_info[2] : pred_depth.shape[1] - pad_info[3]]
if gt_depth is not None:
resize_shape = gt_depth.shape
elif ori_shape != []:
resize_shape = ori_shape
else:
resize_shape = pred_depth.shape
pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], resize_shape, mode='bilinear').squeeze() # to original size
pred_depth = pred_depth * normalize_scale / scale_info
if gt_depth is not None:
pred_depth_scale, scale = align_scale(pred_depth, gt_depth)
else:
pred_depth_scale = None
scale = None
return pred_depth, pred_depth_scale, scale, output_dict
def transform_test_data_scalecano(rgb, intrinsic, data_basic):
"""
Pre-process the input for forwarding. Employ `label scale canonical transformation.'
Args:
rgb: input rgb image. [H, W, 3]
intrinsic: camera intrinsic parameter, [fx, fy, u0, v0]
data_basic: predefined canonical space in configs.
"""
canonical_space = data_basic['canonical_space']
forward_size = data_basic.crop_size
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None]
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None]
# BGR to RGB
rgb = cv2.cvtColor(rgb, cv2.COLOR_BGR2RGB)
ori_h, ori_w, _ = rgb.shape
ori_focal = (intrinsic[0] + intrinsic[1]) / 2
canonical_focal = canonical_space['focal_length']
cano_label_scale_ratio = canonical_focal / ori_focal
canonical_intrinsic = [
intrinsic[0] * cano_label_scale_ratio,
intrinsic[1] * cano_label_scale_ratio,
intrinsic[2],
intrinsic[3],
]
# resize
rgb, cam_model, pad, resize_label_scale_ratio = resize_for_input(rgb, forward_size, canonical_intrinsic, [ori_h, ori_w], 1.0)
# label scale factor
label_scale_factor = cano_label_scale_ratio * resize_label_scale_ratio
rgb = torch.from_numpy(rgb.transpose((2, 0, 1))).float()
rgb = torch.div((rgb - mean), std)
rgb = rgb[None, :, :, :].cuda()
#rgb = rgb[None, :, :, :]
cam_model = torch.from_numpy(cam_model.transpose((2, 0, 1))).float()
cam_model = cam_model[None, :, :, :].cuda()
#cam_model = cam_model[None, :, :, :]
cam_model_stacks = [
torch.nn.functional.interpolate(cam_model, size=(cam_model.shape[2]//i, cam_model.shape[3]//i), mode='bilinear', align_corners=False)
for i in [2, 4, 8, 16, 32]
]
return rgb, cam_model_stacks, pad, label_scale_factor
def do_scalecano_test_with_custom_data(
model: torch.nn.Module,
cfg: dict,
test_data: list,
logger: logging.RootLogger,
is_distributed: bool = True,
local_rank: int = 0,
):
show_dir = cfg.show_dir
save_interval = 1
save_imgs_dir = show_dir + '/vis'
os.makedirs(save_imgs_dir, exist_ok=True)
save_pcd_dir = show_dir + '/pcd'
os.makedirs(save_pcd_dir, exist_ok=True)
normalize_scale = cfg.data_basic.depth_range[1]
dam = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
dam_median = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
dam_global = MetricAverageMeter(['abs_rel', 'rmse', 'silog', 'delta1', 'delta2', 'delta3'])
for i, an in tqdm(enumerate(test_data)):
#for i, an in enumerate(test_data):
print(an['rgb'])
rgb_origin = cv2.imread(an['rgb'])[:, :, ::-1].copy()
if an['depth'] is not None:
gt_depth = cv2.imread(an['depth'], -1)
gt_depth_scale = an['depth_scale']
gt_depth = gt_depth / gt_depth_scale
gt_depth_flag = True
else:
gt_depth = None
gt_depth_flag = False
intrinsic = an['intrinsic']
if intrinsic is None:
intrinsic = [1000.0, 1000.0, rgb_origin.shape[1]/2, rgb_origin.shape[0]/2]
# intrinsic = [542.0, 542.0, 963.706, 760.199]
print(intrinsic)
rgb_input, cam_models_stacks, pad, label_scale_factor = transform_test_data_scalecano(rgb_origin, intrinsic, cfg.data_basic)
pred_depth, pred_depth_scale, scale, output = get_prediction(
model = model,
input = rgb_input,
cam_model = cam_models_stacks,
pad_info = pad,
scale_info = label_scale_factor,
gt_depth = None,
normalize_scale = normalize_scale,
ori_shape=[rgb_origin.shape[0], rgb_origin.shape[1]],
)
pred_depth = (pred_depth > 0) * (pred_depth < 300) * pred_depth
if gt_depth_flag:
pred_depth = torch.nn.functional.interpolate(pred_depth[None, None, :, :], (gt_depth.shape[0], gt_depth.shape[1]), mode='bilinear').squeeze() # to original size
#gt_depth = torch.from_numpy(gt_depth).cuda()
gt_depth = torch.from_numpy(gt_depth)
pred_depth_median = pred_depth * gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median()
pred_global, _ = align_scale_shift(pred_depth, gt_depth)
mask = (gt_depth > 1e-8)
dam.update_metrics_gpu(pred_depth, gt_depth, mask, is_distributed)
dam_median.update_metrics_gpu(pred_depth_median, gt_depth, mask, is_distributed)
dam_global.update_metrics_gpu(pred_global, gt_depth, mask, is_distributed)
print(gt_depth[gt_depth != 0].median() / pred_depth[gt_depth != 0].median(), )
if i % save_interval == 0:
os.makedirs(osp.join(save_imgs_dir, an['folder']), exist_ok=True)
rgb_torch = torch.from_numpy(rgb_origin).to(pred_depth.device).permute(2, 0, 1)
mean = torch.tensor([123.675, 116.28, 103.53]).float()[:, None, None].to(rgb_torch.device)
std = torch.tensor([58.395, 57.12, 57.375]).float()[:, None, None].to(rgb_torch.device)
rgb_torch = torch.div((rgb_torch - mean), std)
save_val_imgs(
i,
pred_depth,
gt_depth if gt_depth is not None else torch.ones_like(pred_depth, device=pred_depth.device),
rgb_torch,
osp.join(an['folder'], an['filename']),
save_imgs_dir,
)
#save_raw_imgs(pred_depth.detach().cpu().numpy(), rgb_torch, osp.join(an['folder'], an['filename']), save_imgs_dir, 1000.0)
# pcd
pred_depth = pred_depth.detach().cpu().numpy()
#pcd = reconstruct_pcd(pred_depth, intrinsic[0], intrinsic[1], intrinsic[2], intrinsic[3])
#os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True)
#save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4]+'.ply'))
if an['intrinsic'] == None:
#for r in [0.9, 1.0, 1.1]:
for r in [1.0]:
#for f in [600, 800, 1000, 1250, 1500]:
for f in [1000]:
pcd = reconstruct_pcd(pred_depth, f * r, f * (2-r), intrinsic[2], intrinsic[3])
fstr = '_fx_' + str(int(f * r)) + '_fy_' + str(int(f * (2-r)))
os.makedirs(osp.join(save_pcd_dir, an['folder']), exist_ok=True)
save_point_cloud(pcd.reshape((-1, 3)), rgb_origin.reshape(-1, 3), osp.join(save_pcd_dir, an['folder'], an['filename'][:-4] + fstr +'.ply'))
if "normal_out_list" in output.keys():
normal_out_list = output['normal_out_list']
pred_normal = normal_out_list[0][:, :3, :, :] # (B, 3, H, W)
H, W = pred_normal.shape[2:]
pred_normal = pred_normal[:, :, pad[0]:H-pad[1], pad[2]:W-pad[3]]
gt_normal = None
#if gt_normal_flag:
if False:
pred_normal = torch.nn.functional.interpolate(pred_normal, size=gt_normal.shape[2:], mode='bilinear', align_corners=True)
gt_normal = cv2.imread(norm_path)
gt_normal = cv2.cvtColor(gt_normal, cv2.COLOR_BGR2RGB)
gt_normal = np.array(gt_normal).astype(np.uint8)
gt_normal = ((gt_normal.astype(np.float32) / 255.0) * 2.0) - 1.0
norm_valid_mask = (np.linalg.norm(gt_normal, axis=2, keepdims=True) > 0.5)
gt_normal = gt_normal * norm_valid_mask
gt_normal_mask = ~torch.all(gt_normal == 0, dim=1, keepdim=True)
dam.update_normal_metrics_gpu(pred_normal, gt_normal, gt_normal_mask, cfg.distributed)# save valiad normal
if i % save_interval == 0:
save_normal_val_imgs(iter,
pred_normal,
gt_normal if gt_normal is not None else torch.ones_like(pred_normal, device=pred_normal.device),
rgb_torch, # data['input'],
osp.join(an['folder'], 'normal_'+an['filename']),
save_imgs_dir,
)
#if gt_depth_flag:
if False:
eval_error = dam.get_metrics()
print('w/o match :', eval_error)
eval_error_median = dam_median.get_metrics()
print('median match :', eval_error_median)
eval_error_global = dam_global.get_metrics()
print('global match :', eval_error_global)
else:
print('missing gt_depth, only save visualizations...')