Spaces:
Sleeping
Sleeping
# Copyright (c) Meta Platforms, Inc. and affiliates. | |
# All rights reserved. | |
# | |
# This source code is licensed under the license found in the | |
# LICENSE file in the root directory of this source tree. | |
# References: | |
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py | |
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py | |
from functools import partial | |
import math | |
import logging | |
from typing import Sequence, Tuple, Union, Callable, Optional, Dict, Any, List | |
import torch | |
import torch.nn as nn | |
from torch import Tensor | |
import torch.utils.checkpoint | |
from torch.nn.init import trunc_normal_ | |
import torch.nn.init | |
import torch.nn.functional as F | |
#from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block | |
logger = logging.getLogger("dinov2") | |
# SSF finetuning originally by dongzelian | |
def init_ssf_scale_shift(dim): | |
scale = nn.Parameter(torch.ones(dim)) | |
shift = nn.Parameter(torch.zeros(dim)) | |
nn.init.normal_(scale, mean=1, std=.02) | |
nn.init.normal_(shift, std=.02) | |
return scale, shift | |
def ssf_ada(x, scale, shift): | |
assert scale.shape == shift.shape | |
if x.shape[-1] == scale.shape[0]: | |
return x * scale + shift | |
elif x.shape[1] == scale.shape[0]: | |
return x * scale.view(1, -1, 1, 1) + shift.view(1, -1, 1, 1) | |
else: | |
raise ValueError('the input tensor shape does not match the shape of the scale factor.') | |
# LoRA finetuning originally by edwardjhu | |
class LoRALayer(): | |
def __init__( | |
self, | |
r: int, | |
lora_alpha: int, | |
lora_dropout: float, | |
merge_weights: bool, | |
): | |
self.r = r | |
self.lora_alpha = lora_alpha | |
# Optional dropout | |
if lora_dropout > 0.: | |
self.lora_dropout = nn.Dropout(p=lora_dropout) | |
else: | |
self.lora_dropout = lambda x: x | |
# Mark the weight as unmerged | |
self.merged = False | |
self.merge_weights = merge_weights | |
class LoRALinear(nn.Linear, LoRALayer): | |
# LoRA implemented in a dense layer | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int, | |
r: int = 0, | |
lora_alpha: int = 1, | |
lora_dropout: float = 0., | |
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out) | |
merge_weights: bool = True, | |
**kwargs | |
): | |
nn.Linear.__init__(self, in_features, out_features, **kwargs) | |
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout, | |
merge_weights=merge_weights) | |
self.fan_in_fan_out = fan_in_fan_out | |
# Actual trainable parameters | |
if r > 0: | |
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features))) | |
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r))) | |
self.scaling = self.lora_alpha / self.r | |
# Freezing the pre-trained weight matrix | |
self.weight.requires_grad = False | |
self.reset_parameters() | |
if fan_in_fan_out: | |
self.weight.data = self.weight.data.transpose(0, 1) | |
def reset_parameters(self): | |
#nn.Linear.reset_parameters(self) | |
if hasattr(self, 'lora_A'): | |
# initialize B the same way as the default for nn.Linear and A to zero | |
# this is different than what is described in the paper but should not affect performance | |
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5)) | |
nn.init.zeros_(self.lora_B) | |
# def train(self, mode: bool = True): | |
# def T(w): | |
# return w.transpose(0, 1) if self.fan_in_fan_out else w | |
# nn.Linear.train(self, mode) | |
# if mode: | |
# if self.merge_weights and self.merged: | |
# # Make sure that the weights are not merged | |
# if self.r > 0: | |
# self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling | |
# self.merged = False | |
# else: | |
# if self.merge_weights and not self.merged: | |
# # Merge the weights and mark it | |
# if self.r > 0: | |
# self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling | |
# self.merged = True | |
def forward(self, x: torch.Tensor): | |
def T(w): | |
return w.transpose(0, 1) if self.fan_in_fan_out else w | |
if self.r > 0 and not self.merged: | |
result = F.linear(x, T(self.weight), bias=self.bias) | |
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling | |
return result | |
else: | |
return F.linear(x, T(self.weight), bias=self.bias) | |
def make_2tuple(x): | |
if isinstance(x, tuple): | |
assert len(x) == 2 | |
return x | |
assert isinstance(x, int) | |
return (x, x) | |
def drop_path(x, drop_prob: float = 0.0, training: bool = False): | |
if drop_prob == 0.0 or not training: | |
return x | |
keep_prob = 1 - drop_prob | |
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets | |
random_tensor = x.new_empty(shape).bernoulli_(keep_prob) | |
if keep_prob > 0.0: | |
random_tensor.div_(keep_prob) | |
output = x * random_tensor | |
return output | |
class DropPath(nn.Module): | |
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).""" | |
def __init__(self, drop_prob=None): | |
super(DropPath, self).__init__() | |
self.drop_prob = drop_prob | |
def forward(self, x): | |
return drop_path(x, self.drop_prob, self.training) | |
class LayerScale(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
init_values: Union[float, Tensor] = 1e-5, | |
inplace: bool = False, | |
) -> None: | |
super().__init__() | |
self.inplace = inplace | |
self.gamma = nn.Parameter(init_values * torch.ones(dim)) | |
def forward(self, x: Tensor) -> Tensor: | |
return x.mul_(self.gamma) if self.inplace else x * self.gamma | |
class PatchEmbed(nn.Module): | |
""" | |
2D image to patch embedding: (B,C,H,W) -> (B,N,D) | |
Args: | |
img_size: Image size. | |
patch_size: Patch token size. | |
in_chans: Number of input image channels. | |
embed_dim: Number of linear projection output channels. | |
norm_layer: Normalization layer. | |
""" | |
def __init__( | |
self, | |
img_size: Union[int, Tuple[int, int]] = 224, | |
patch_size: Union[int, Tuple[int, int]] = 16, | |
in_chans: int = 3, | |
embed_dim: int = 768, | |
norm_layer: Optional[Callable] = None, | |
flatten_embedding: bool = True, | |
tuning_mode: Optional[str] = None | |
) -> None: | |
super().__init__() | |
image_HW = make_2tuple(img_size) | |
patch_HW = make_2tuple(patch_size) | |
patch_grid_size = ( | |
image_HW[0] // patch_HW[0], | |
image_HW[1] // patch_HW[1], | |
) | |
self.img_size = image_HW | |
self.patch_size = patch_HW | |
self.patches_resolution = patch_grid_size | |
self.num_patches = patch_grid_size[0] * patch_grid_size[1] | |
self.in_chans = in_chans | |
self.embed_dim = embed_dim | |
self.flatten_embedding = flatten_embedding | |
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) | |
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() | |
if tuning_mode != None: | |
self.tuning_mode = tuning_mode | |
if tuning_mode == 'ssf': | |
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim) | |
else: | |
pass | |
#raise NotImplementedError() | |
else: | |
self.tuning_mode = None | |
def forward(self, x: Tensor) -> Tensor: | |
_, _, H, W = x.shape | |
patch_H, patch_W = self.patch_size | |
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" | |
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" | |
x = self.proj(x) # B C H W | |
H, W = x.size(2), x.size(3) | |
x = x.flatten(2).transpose(1, 2) # B HW C | |
x = self.norm(x) | |
if self.tuning_mode == 'ssf': | |
x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1) | |
if not self.flatten_embedding: | |
x = x.reshape(-1, H, W, self.embed_dim) # B H W C | |
return x | |
def flops(self) -> float: | |
Ho, Wo = self.patches_resolution | |
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) | |
if self.norm is not None: | |
flops += Ho * Wo * self.embed_dim | |
return flops | |
class Mlp(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = nn.GELU, | |
drop: float = 0.0, | |
bias: bool = True, | |
tuning_mode: Optional[int] = None | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias) | |
self.act = act_layer() | |
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias) | |
self.drop = nn.Dropout(drop) | |
if tuning_mode != None: | |
self.tuning_mode = tuning_mode | |
if tuning_mode == 'ssf': | |
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(hidden_features) | |
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features) | |
else: | |
pass | |
#raise NotImplementedError() | |
else: | |
self.tuning_mode = None | |
def forward(self, x: Tensor) -> Tensor: | |
x = self.fc1(x) | |
if self.tuning_mode == 'ssf': | |
x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1) | |
x = self.act(x) | |
x = self.drop(x) | |
x = self.fc2(x) | |
if self.tuning_mode == 'ssf': | |
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2) | |
x = self.drop(x) | |
return x | |
class SwiGLUFFN(nn.Module): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = None, | |
drop: float = 0.0, | |
bias: bool = True, | |
tuning_mode: Optional[int] = None | |
) -> None: | |
super().__init__() | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) | |
self.w3 = nn.Linear(hidden_features, out_features, bias=bias) | |
if tuning_mode != None: | |
self.tuning_mode = tuning_mode | |
if tuning_mode == 'ssf': | |
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(2 * hidden_features) | |
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features) | |
else: | |
pass | |
#raise NotImplementedError() | |
else: | |
self.tuning_mode = None | |
def forward(self, x: Tensor) -> Tensor: | |
x12 = self.w12(x) | |
if self.tuning_mode == 'ssf': | |
x12 = ssf_ada(x12, self.ssf_scale_1, self.ssf_shift_1) | |
x1, x2 = x12.chunk(2, dim=-1) | |
hidden = F.silu(x1) * x2 | |
out = self.w3(hidden) | |
if self.tuning_mode == 'ssf': | |
out = ssf_ada(out, self.ssf_scale_2, self.ssf_scale_2) | |
return out | |
try: | |
from xformers.ops import SwiGLU | |
#import numpy.bool | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
SwiGLU = SwiGLUFFN | |
XFORMERS_AVAILABLE = False | |
class SwiGLUFFNFused(SwiGLU): | |
def __init__( | |
self, | |
in_features: int, | |
hidden_features: Optional[int] = None, | |
out_features: Optional[int] = None, | |
act_layer: Callable[..., nn.Module] = None, | |
drop: float = 0.0, | |
bias: bool = True, | |
) -> None: | |
out_features = out_features or in_features | |
hidden_features = hidden_features or in_features | |
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 | |
super().__init__( | |
in_features=in_features, | |
hidden_features=hidden_features, | |
out_features=out_features, | |
bias=bias, | |
) | |
try: | |
from xformers.ops import memory_efficient_attention, unbind, fmha | |
from xformers.components.attention import ScaledDotProduct | |
from xformers.components import MultiHeadDispatch | |
#import numpy.bool | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
logger.warning("xFormers not available") | |
XFORMERS_AVAILABLE = False | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int = 8, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
attn_drop: float = 0.0, | |
proj_drop: float = 0.0, | |
window_size: int = 0, | |
tuning_mode: Optional[int] = None | |
) -> None: | |
super().__init__() | |
self.num_heads = num_heads | |
head_dim = dim // num_heads | |
self.scale = head_dim**-0.5 | |
if tuning_mode == 'lora': | |
self.tuning_mode = tuning_mode | |
self.qkv = LoRALinear(dim, dim * 3, bias=qkv_bias, r=8) | |
else: | |
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) | |
self.attn_drop = nn.Dropout(attn_drop) | |
if tuning_mode == 'lora': | |
self.tuning_mode = tuning_mode | |
self.proj = LoRALinear(dim, dim, bias=proj_bias, r=8) | |
else: | |
self.proj = nn.Linear(dim, dim, bias=proj_bias) | |
self.proj_drop = nn.Dropout(proj_drop) | |
if tuning_mode != None: | |
self.tuning_mode = tuning_mode | |
if tuning_mode == 'ssf': | |
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim * 3) | |
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim) | |
else: | |
pass | |
#raise NotImplementedError() | |
else: | |
self.tuning_mode = None | |
#if not self.training: | |
# | |
# self.attn = ScaledDotProduct() | |
#self.attn = MultiHeadDispatch(dim_model=EMB, residual_dropout=DROPOUT, num_heads=HEADS, attention=attn) | |
def forward(self, x: Tensor, attn_bias=None) -> Tensor: | |
B, N, C = x.shape | |
if self.tuning_mode == 'ssf': | |
qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
else: | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) | |
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2] | |
attn = q @ k.transpose(-2, -1) | |
if attn_bias is not None: | |
attn = attn + attn_bias[:, :, :N] | |
attn = attn.softmax(dim=-1) | |
attn = self.attn_drop(attn) | |
x = (attn @ v).transpose(1, 2).reshape(B, N, C) | |
x = self.proj(x) | |
if self.tuning_mode == 'ssf': | |
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2) | |
x = self.proj_drop(x) | |
return x | |
class MemEffAttention(Attention): | |
def forward(self, x: Tensor, attn_bias=None) -> Tensor: | |
if not XFORMERS_AVAILABLE: | |
#if True: | |
assert attn_bias is None, "xFormers is required for nested tensors usage" | |
return super().forward(x, attn_bias) | |
B, N, C = x.shape | |
if self.tuning_mode == 'ssf': | |
qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
else: | |
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads) | |
q, k, v = unbind(qkv, 2) | |
if attn_bias is not None: | |
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias[:, :, :N]) | |
else: | |
x = memory_efficient_attention(q, k, v) | |
x = x.reshape([B, N, C]) | |
x = self.proj(x) | |
if self.tuning_mode == 'ssf': | |
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2) | |
x = self.proj_drop(x) | |
return x | |
try: | |
from xformers.ops import fmha | |
from xformers.ops import scaled_index_add, index_select_cat | |
#import numpy.bool | |
XFORMERS_AVAILABLE = True | |
except ImportError: | |
logger.warning("xFormers not available") | |
XFORMERS_AVAILABLE = False | |
class Block(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
qkv_bias: bool = False, | |
proj_bias: bool = True, | |
ffn_bias: bool = True, | |
drop: float = 0.0, | |
attn_drop: float = 0.0, | |
init_values = None, | |
drop_path: float = 0.0, | |
act_layer: Callable[..., nn.Module] = nn.GELU, | |
norm_layer: Callable[..., nn.Module] = nn.LayerNorm, | |
attn_class: Callable[..., nn.Module] = Attention, | |
ffn_layer: Callable[..., nn.Module] = Mlp, | |
tuning_mode: Optional[int] = None | |
) -> None: | |
super().__init__() | |
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}") | |
self.norm1 = norm_layer(dim) | |
self.attn = attn_class( | |
dim, | |
num_heads=num_heads, | |
qkv_bias=qkv_bias, | |
proj_bias=proj_bias, | |
attn_drop=attn_drop, | |
proj_drop=drop, | |
tuning_mode=tuning_mode | |
) | |
if tuning_mode != None: | |
self.tuning_mode = tuning_mode | |
if tuning_mode == 'ssf': | |
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim) | |
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim) | |
else: | |
pass | |
#raise NotImplementedError() | |
else: | |
self.tuning_mode = None | |
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.norm2 = norm_layer(dim) | |
mlp_hidden_dim = int(dim * mlp_ratio) | |
self.mlp = ffn_layer( | |
in_features=dim, | |
hidden_features=mlp_hidden_dim, | |
act_layer=act_layer, | |
drop=drop, | |
bias=ffn_bias, | |
) | |
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity() | |
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity() | |
self.sample_drop_ratio = drop_path | |
def forward(self, x: Tensor, attn_bias=None) -> Tensor: | |
def attn_residual_func(x: Tensor, attn_bias) -> Tensor: | |
if self.tuning_mode == 'ssf': | |
return self.ls1(self.attn(ssf_ada(self.norm1(x), self.ssf_scale_1, self.ssf_shift_1), attn_bias)) | |
else: | |
return self.ls1(self.attn(self.norm1(x), attn_bias)) | |
def ffn_residual_func(x: Tensor) -> Tensor: | |
if self.tuning_mode == 'ssf': | |
return self.ls2(self.mlp(ssf_ada(self.norm2(x), self.ssf_scale_2, self.ssf_shift_2))) | |
else: | |
return self.ls2(self.mlp(self.norm2(x))) | |
if self.training and self.sample_drop_ratio > 0.1: | |
# the overhead is compensated only for a drop path rate larger than 0.1 | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=attn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
attn_bias=attn_bias | |
) | |
x = drop_add_residual_stochastic_depth( | |
x, | |
residual_func=ffn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
) | |
elif self.training and self.sample_drop_ratio > 0.0: | |
x = x + self.drop_path1(attn_residual_func(x, attn_bias)) | |
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2 | |
else: | |
x = x + attn_residual_func(x, attn_bias) | |
x = x + ffn_residual_func(x) | |
return x | |
def drop_add_residual_stochastic_depth( | |
x: Tensor, | |
residual_func: Callable[[Tensor], Tensor], | |
sample_drop_ratio: float = 0.0, attn_bias=None | |
) -> Tensor: | |
# 1) extract subset using permutation | |
b, n, d = x.shape | |
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) | |
brange = (torch.randperm(b, device=x.device))[:sample_subset_size] | |
x_subset = x[brange] | |
# 2) apply residual_func to get residual | |
residual = residual_func(x_subset, attn_bias) | |
x_flat = x.flatten(1) | |
residual = residual.flatten(1) | |
residual_scale_factor = b / sample_subset_size | |
# 3) add the residual | |
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) | |
return x_plus_residual.view_as(x) | |
def get_branges_scales(x, sample_drop_ratio=0.0): | |
b, n, d = x.shape | |
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1) | |
brange = (torch.randperm(b, device=x.device))[:sample_subset_size] | |
residual_scale_factor = b / sample_subset_size | |
return brange, residual_scale_factor | |
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None): | |
if scaling_vector is None: | |
x_flat = x.flatten(1) | |
residual = residual.flatten(1) | |
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor) | |
else: | |
x_plus_residual = scaled_index_add( | |
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor | |
) | |
return x_plus_residual | |
attn_bias_cache: Dict[Tuple, Any] = {} | |
def get_attn_bias_and_cat(x_list, branges=None): | |
""" | |
this will perform the index select, cat the tensors, and provide the attn_bias from cache | |
""" | |
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list] | |
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list)) | |
if all_shapes not in attn_bias_cache.keys(): | |
seqlens = [] | |
for b, x in zip(batch_sizes, x_list): | |
for _ in range(b): | |
seqlens.append(x.shape[1]) | |
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens) | |
attn_bias._batch_sizes = batch_sizes | |
attn_bias_cache[all_shapes] = attn_bias | |
if branges is not None: | |
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1]) | |
else: | |
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list) | |
cat_tensors = torch.cat(tensors_bs1, dim=1) | |
return attn_bias_cache[all_shapes], cat_tensors | |
def drop_add_residual_stochastic_depth_list( | |
x_list: List[Tensor], | |
residual_func: Callable[[Tensor, Any], Tensor], | |
sample_drop_ratio: float = 0.0, | |
scaling_vector=None, | |
) -> Tensor: | |
# 1) generate random set of indices for dropping samples in the batch | |
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list] | |
branges = [s[0] for s in branges_scales] | |
residual_scale_factors = [s[1] for s in branges_scales] | |
# 2) get attention bias and index+concat the tensors | |
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges) | |
# 3) apply residual_func to get residual, and split the result | |
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore | |
outputs = [] | |
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors): | |
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x)) | |
return outputs | |
class NestedTensorBlock(Block): | |
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]: | |
""" | |
x_list contains a list of tensors to nest together and run | |
""" | |
assert isinstance(self.attn, MemEffAttention) | |
if self.training and self.sample_drop_ratio > 0.0: | |
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: | |
return self.attn(self.norm1(x), attn_bias=attn_bias) | |
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: | |
return self.mlp(self.norm2(x)) | |
x_list = drop_add_residual_stochastic_depth_list( | |
x_list, | |
residual_func=attn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None, | |
) | |
x_list = drop_add_residual_stochastic_depth_list( | |
x_list, | |
residual_func=ffn_residual_func, | |
sample_drop_ratio=self.sample_drop_ratio, | |
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None, | |
) | |
return x_list | |
else: | |
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor: | |
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias)) | |
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor: | |
return self.ls2(self.mlp(self.norm2(x))) | |
attn_bias, x = get_attn_bias_and_cat(x_list) | |
x = x + attn_residual_func(x, attn_bias=attn_bias) | |
x = x + ffn_residual_func(x) | |
return attn_bias.split(x) | |
def forward(self, x_or_x_list, attn_bias=None): | |
if isinstance(x_or_x_list, Tensor): | |
return super().forward(x_or_x_list, attn_bias) | |
elif isinstance(x_or_x_list, list): | |
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage" | |
return self.forward_nested(x_or_x_list) | |
else: | |
raise AssertionError | |
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: | |
if not depth_first and include_root: | |
fn(module=module, name=name) | |
for child_name, child_module in module.named_children(): | |
child_name = ".".join((name, child_name)) if name else child_name | |
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) | |
if depth_first and include_root: | |
fn(module=module, name=name) | |
return module | |
class BlockChunk(nn.ModuleList): | |
def forward(self, x, others=None): | |
for b in self: | |
if others == None: | |
x = b(x) | |
else: | |
x = b(x, others) | |
return x | |
class DinoVisionTransformer(nn.Module): | |
def __init__( | |
self, | |
img_size=518, | |
patch_size=16, | |
in_chans=3, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4.0, | |
qkv_bias=True, | |
ffn_bias=True, | |
proj_bias=True, | |
drop_path_rate=0.0, | |
drop_path_uniform=False, | |
init_values=1e-5, # for layerscale: None or 0 => no layerscale | |
embed_layer=PatchEmbed, | |
act_layer=nn.GELU, | |
block_fn=Block, | |
ffn_layer="mlp", | |
block_chunks=1, | |
num_register_tokens=0, | |
interpolate_antialias=False, | |
interpolate_offset=0.1, | |
tuning_mode=None, | |
**kwargs | |
): | |
""" | |
Args: | |
img_size (int, tuple): input image size | |
patch_size (int, tuple): patch size | |
in_chans (int): number of input channels | |
embed_dim (int): embedding dimension | |
depth (int): depth of transformer | |
num_heads (int): number of attention heads | |
mlp_ratio (int): ratio of mlp hidden dim to embedding dim | |
qkv_bias (bool): enable bias for qkv if True | |
proj_bias (bool): enable bias for proj in attn if True | |
ffn_bias (bool): enable bias for ffn if True | |
drop_path_rate (float): stochastic depth rate | |
drop_path_uniform (bool): apply uniform drop rate across blocks | |
weight_init (str): weight init scheme | |
init_values (float): layer-scale init values | |
embed_layer (nn.Module): patch embedding layer | |
act_layer (nn.Module): MLP activation layer | |
block_fn (nn.Module): transformer block class | |
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" | |
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap | |
num_register_tokens: (int) number of extra cls tokens (so-called "registers") | |
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings | |
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings | |
""" | |
super().__init__() | |
norm_layer = partial(nn.LayerNorm, eps=1e-6) | |
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models | |
self.num_tokens = 1 | |
self.n_blocks = depth | |
self.num_heads = num_heads | |
self.patch_size = patch_size | |
self.num_register_tokens = num_register_tokens | |
self.interpolate_antialias = interpolate_antialias | |
self.interpolate_offset = interpolate_offset | |
if tuning_mode != None: | |
self.tuning_mode = tuning_mode | |
if tuning_mode == 'ssf': | |
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim) | |
else: | |
pass | |
#raise NotImplementedError() | |
else: | |
self.tuning_mode = None | |
tuning_mode_list = [tuning_mode] * depth | |
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, tuning_mode=tuning_mode) | |
num_patches = self.patch_embed.num_patches | |
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) | |
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) | |
assert num_register_tokens >= 0 | |
self.register_tokens = ( | |
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None | |
) | |
if drop_path_uniform is True: | |
dpr = [drop_path_rate] * depth | |
else: | |
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule | |
if ffn_layer == "mlp": | |
logger.info("using MLP layer as FFN") | |
ffn_layer = Mlp | |
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": | |
logger.info("using SwiGLU layer as FFN") | |
ffn_layer = SwiGLUFFNFused | |
elif ffn_layer == "identity": | |
logger.info("using Identity layer as FFN") | |
def f(*args, **kwargs): | |
return nn.Identity() | |
ffn_layer = f | |
else: | |
raise NotImplementedError | |
blocks_list = [ | |
block_fn( | |
dim=embed_dim, | |
num_heads=num_heads, | |
mlp_ratio=mlp_ratio, | |
qkv_bias=qkv_bias, | |
proj_bias=proj_bias, | |
ffn_bias=ffn_bias, | |
drop_path=dpr[i], | |
norm_layer=norm_layer, | |
act_layer=act_layer, | |
ffn_layer=ffn_layer, | |
init_values=init_values, | |
tuning_mode=tuning_mode_list[i] | |
) | |
for i in range(depth) | |
] | |
if block_chunks > 0: | |
self.chunked_blocks = True | |
chunked_blocks = [] | |
chunksize = depth // block_chunks | |
for i in range(0, depth, chunksize): | |
# this is to keep the block index consistent if we chunk the block list | |
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) | |
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) | |
else: | |
self.chunked_blocks = False | |
self.blocks = nn.ModuleList(blocks_list) | |
self.norm = norm_layer(embed_dim) | |
self.head = nn.Identity() | |
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) | |
self.init_weights() | |
def init_weights(self): | |
trunc_normal_(self.pos_embed, std=0.02) | |
nn.init.normal_(self.cls_token, std=1e-6) | |
if self.register_tokens is not None: | |
nn.init.normal_(self.register_tokens, std=1e-6) | |
named_apply(init_weights_vit_timm, self) | |
def interpolate_pos_encoding(self, x, w, h): | |
previous_dtype = x.dtype | |
npatch = x.shape[1] - 1 | |
N = self.pos_embed.shape[1] - 1 | |
if npatch == N and w == h: | |
return self.pos_embed | |
pos_embed = self.pos_embed.float() | |
class_pos_embed = pos_embed[:, 0] | |
patch_pos_embed = pos_embed[:, 1:] | |
dim = x.shape[-1] | |
w0 = w // self.patch_size | |
h0 = h // self.patch_size | |
# we add a small number to avoid floating point error in the interpolation | |
# see discussion at https://github.com/facebookresearch/dino/issues/8 | |
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset | |
sqrt_N = math.sqrt(N) | |
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N | |
patch_pos_embed = nn.functional.interpolate( | |
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2), | |
scale_factor=(sx, sy), | |
mode="bicubic", | |
antialias=self.interpolate_antialias, | |
) | |
assert int(w0) == patch_pos_embed.shape[-2] | |
assert int(h0) == patch_pos_embed.shape[-1] | |
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) | |
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) | |
def prepare_tokens_with_masks(self, x, masks=None): | |
B, nc, w, h = x.shape | |
x = self.patch_embed(x) | |
if masks is not None: | |
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) | |
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) | |
x = x + self.interpolate_pos_encoding(x, w, h) | |
if self.register_tokens is not None: | |
x = torch.cat( | |
( | |
x[:, :1], | |
self.register_tokens.expand(x.shape[0], -1, -1), | |
x[:, 1:], | |
), | |
dim=1, | |
) | |
return x | |
def forward_features_list(self, x_list, masks_list): | |
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] | |
for blk in self.blocks: | |
x = blk(x) | |
all_x = x | |
output = [] | |
for x, masks in zip(all_x, masks_list): | |
x_norm = self.norm(x) | |
output.append( | |
{ | |
"x_norm_clstoken": x_norm[:, 0], | |
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], | |
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], | |
"x_prenorm": x, | |
"masks": masks, | |
} | |
) | |
return output | |
def forward_features(self, x, masks=None): | |
if isinstance(x, list): | |
return self.forward_features_list(x, masks) | |
B, C, H, W = x.size() | |
pad_h = (self.patch_size - H % self.patch_size) | |
pad_w = (self.patch_size - W % self.patch_size) | |
if pad_h == self.patch_size: | |
pad_h = 0 | |
if pad_w == self.patch_size: | |
pad_w = 0 | |
#x = nn.functional.pad(x, (pad_h//2, pad_h-pad_h//2, pad_w//2, pad_w-pad_w//2)) | |
if pad_h + pad_w > 0: | |
x = torch.nn.functional.interpolate(x, (H+pad_h, W+pad_w), mode='bilinear') | |
x = self.prepare_tokens_with_masks(x, masks) | |
for blk in self.blocks: | |
x = blk(x) | |
x_norm = self.norm(x) | |
if self.tuning_mode == 'ssf': | |
x_norm = ssf_ada(x_norm, self.ssf_scale_1, self.ssf_shift_1) | |
# return { | |
# "x_norm_clstoken": x_norm[:, 0], | |
# "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], | |
# "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], | |
# "x_prenorm": x, | |
# "masks": masks, | |
# } | |
features = [] | |
features.append(x_norm) | |
features.append(x_norm) | |
features.append(x_norm) | |
features.append(x_norm) | |
return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W, self.num_register_tokens)] | |
def _get_intermediate_layers_not_chunked(self, x, n=1): | |
x = self.prepare_tokens_with_masks(x) | |
# If n is an int, take the n last blocks. If it's a list, take them | |
output, total_block_len = [], len(self.blocks) | |
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n | |
for i, blk in enumerate(self.blocks): | |
x = blk(x) | |
if i in blocks_to_take: | |
output.append(x) | |
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" | |
return output | |
def _get_intermediate_layers_chunked(self, x, n=1): | |
x = self.prepare_tokens_with_masks(x) | |
output, i, total_block_len = [], 0, len(self.blocks[-1]) | |
# If n is an int, take the n last blocks. If it's a list, take them | |
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n | |
for block_chunk in self.blocks: | |
for blk in block_chunk[i:]: # Passing the nn.Identity() | |
x = blk(x) | |
if i in blocks_to_take: | |
output.append(x) | |
i += 1 | |
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" | |
return output | |
def get_intermediate_layers( | |
self, | |
x: torch.Tensor, | |
n: Union[int, Sequence] = 1, # Layers or n last layers to take | |
reshape: bool = False, | |
return_class_token: bool = False, | |
norm=True, | |
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: | |
if self.chunked_blocks: | |
outputs = self._get_intermediate_layers_chunked(x, n) | |
else: | |
outputs = self._get_intermediate_layers_not_chunked(x, n) | |
if norm: | |
outputs = [self.norm(out) for out in outputs] | |
class_tokens = [out[:, 0] for out in outputs] | |
outputs = [out[:, 1:] for out in outputs] | |
if reshape: | |
B, _, w, h = x.shape | |
outputs = [ | |
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous() | |
for out in outputs | |
] | |
if return_class_token: | |
return tuple(zip(outputs, class_tokens)) | |
return tuple(outputs) | |
def forward(self, *args, is_training=False, **kwargs): | |
ret = self.forward_features(*args, **kwargs) | |
return ret | |
# if is_training: | |
# return ret | |
# else: | |
# return self.head(ret["x_norm_clstoken"]) | |
def init_weights_vit_timm(module: nn.Module, name: str = ""): | |
"""ViT weight initialization, original timm impl (for reproducibility)""" | |
if isinstance(module, nn.Linear): | |
trunc_normal_(module.weight, std=0.02) | |
if module.bias is not None: | |
nn.init.zeros_(module.bias) | |
def load_ckpt_dino(checkpoint, model): | |
if checkpoint is not None: | |
try: | |
with open(checkpoint, "rb") as f: | |
state_dict = torch.load(f) | |
except: | |
print('NO pretrained imagenet ckpt available! Check your path!') | |
del model.mask_token | |
return | |
try: | |
model.load_state_dict(state_dict, strict=True) | |
except: | |
new_state_dict = {} | |
for key, value in state_dict.items(): | |
if 'blocks' in key: | |
key_new = 'blocks.0' + key[len('blocks'):] | |
else: | |
key_new = key | |
new_state_dict[key_new] = value | |
model.load_state_dict(new_state_dict, strict=True) | |
del model.mask_token | |
return | |
else: | |
return | |
def vit_small(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=384, | |
depth=12, | |
num_heads=6, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
**kwargs, | |
) | |
load_ckpt_dino(checkpoint, model) | |
return model | |
def vit_base(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
**kwargs, | |
) | |
return model | |
def vit_large(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
**kwargs, | |
) | |
if checkpoint is not None: | |
with open(checkpoint, "rb") as f: | |
state_dict = torch.load(f) | |
try: | |
model.load_state_dict(state_dict, strict=True) | |
except: | |
new_state_dict = {} | |
for key, value in state_dict.items(): | |
if 'blocks' in key: | |
key_new = 'blocks.0' + key[len('blocks'):] | |
else: | |
key_new = key | |
new_state_dict[key_new] = value | |
model.load_state_dict(new_state_dict, strict=True) | |
del model.mask_token | |
return model | |
def vit_giant2(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs): | |
""" | |
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 | |
""" | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=1536, | |
depth=40, | |
num_heads=24, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
ffn_layer='swiglu', | |
**kwargs, | |
) | |
return model | |
def vit_small_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=384, | |
depth=12, | |
num_heads=6, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
tuning_mode=tuning_mode, | |
**kwargs, | |
) | |
load_ckpt_dino(checkpoint, model) | |
return model | |
def vit_base_reg(patch_size=14, num_register_tokens=4, checkpoint=None, **kwargs): | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=768, | |
depth=12, | |
num_heads=12, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
**kwargs, | |
) | |
load_ckpt_dino(checkpoint, model) | |
return model | |
def vit_large_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs): | |
model = DinoVisionTransformer( | |
img_size = 518, | |
patch_size=patch_size, | |
embed_dim=1024, | |
depth=24, | |
num_heads=16, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
tuning_mode=tuning_mode, | |
**kwargs, | |
) | |
load_ckpt_dino(checkpoint, model) | |
return model | |
def vit_giant2_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs): | |
""" | |
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 | |
""" | |
model = DinoVisionTransformer( | |
patch_size=patch_size, | |
embed_dim=1536, | |
depth=40, | |
num_heads=24, | |
mlp_ratio=4, | |
block_fn=partial(Block, attn_class=MemEffAttention), | |
num_register_tokens=num_register_tokens, | |
ffn_layer='swiglu', | |
tuning_mode=tuning_mode, | |
**kwargs, | |
) | |
load_ckpt_dino(checkpoint, model) | |
return model | |
if __name__ == '__main__': | |
try: | |
from mmcv.utils import Config | |
except: | |
from mmengine import Config | |
#rgb = torch.rand((2, 3, 518, 518)).cuda() | |
#cfg.data_basic['crop_size']['0'] | |
#cfg.data_basic['crop_size']['1'] | |
cfg = Config.fromfile('/opt/ml/project/mu.hu/projects/monodepth_vit/mono/configs/RAFTDecoder/vit.raft5.large.kitti.py') | |
#rgb = torch.arange(0, 2*3*1036*1036, 1).cuda().float().view(2, 3, 1036, 1036) | |
rgb = torch.zeros(1, 3, 616, 1064).cuda() | |
cfg['tuning_mode'] = 'ssf' | |
#model = vit_large_reg(checkpoint="/cpfs02/shared/public/groups/local_map/yvan/pretrained_weight_repo/vit/dinov2_vitl14_reg4_pretrain.pth", kwarg=cfg).cuda() | |
model = vit_large_reg(tuning_mode='ssf').cuda() | |
#import timm | |
#model2 = timm.models.vision_transformer.vit_large_patch14_dinov2().cuda() | |
#timm.models.load_checkpoint(model2, '/cpfs02/shared/public/yvan/pretrained_weight_repo/vit/dinov2_vitl14_pretrain.pth', filter_fn=timm.models.vision_transformer.checkpoint_filter_fn) | |
out1 = model(rgb) | |
#out2 = model2(rgb) | |
temp = 0 | |