Metric3D / mono /model /backbones /ViT_DINO_reg.py
JUGGHM's picture
Upload 62 files
8a32844
raw
history blame
46 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
# References:
# https://github.com/facebookresearch/dino/blob/main/vision_transformer.py
# https://github.com/rwightman/pytorch-image-models/tree/master/timm/models/vision_transformer.py
from functools import partial
import math
import logging
from typing import Sequence, Tuple, Union, Callable, Optional, Dict, Any, List
import torch
import torch.nn as nn
from torch import Tensor
import torch.utils.checkpoint
from torch.nn.init import trunc_normal_
import torch.nn.init
import torch.nn.functional as F
#from dinov2.layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block
logger = logging.getLogger("dinov2")
# SSF finetuning originally by dongzelian
def init_ssf_scale_shift(dim):
scale = nn.Parameter(torch.ones(dim))
shift = nn.Parameter(torch.zeros(dim))
nn.init.normal_(scale, mean=1, std=.02)
nn.init.normal_(shift, std=.02)
return scale, shift
def ssf_ada(x, scale, shift):
assert scale.shape == shift.shape
if x.shape[-1] == scale.shape[0]:
return x * scale + shift
elif x.shape[1] == scale.shape[0]:
return x * scale.view(1, -1, 1, 1) + shift.view(1, -1, 1, 1)
else:
raise ValueError('the input tensor shape does not match the shape of the scale factor.')
# LoRA finetuning originally by edwardjhu
class LoRALayer():
def __init__(
self,
r: int,
lora_alpha: int,
lora_dropout: float,
merge_weights: bool,
):
self.r = r
self.lora_alpha = lora_alpha
# Optional dropout
if lora_dropout > 0.:
self.lora_dropout = nn.Dropout(p=lora_dropout)
else:
self.lora_dropout = lambda x: x
# Mark the weight as unmerged
self.merged = False
self.merge_weights = merge_weights
class LoRALinear(nn.Linear, LoRALayer):
# LoRA implemented in a dense layer
def __init__(
self,
in_features: int,
out_features: int,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.,
fan_in_fan_out: bool = False, # Set this to True if the layer to replace stores weight like (fan_in, fan_out)
merge_weights: bool = True,
**kwargs
):
nn.Linear.__init__(self, in_features, out_features, **kwargs)
LoRALayer.__init__(self, r=r, lora_alpha=lora_alpha, lora_dropout=lora_dropout,
merge_weights=merge_weights)
self.fan_in_fan_out = fan_in_fan_out
# Actual trainable parameters
if r > 0:
self.lora_A = nn.Parameter(self.weight.new_zeros((r, in_features)))
self.lora_B = nn.Parameter(self.weight.new_zeros((out_features, r)))
self.scaling = self.lora_alpha / self.r
# Freezing the pre-trained weight matrix
self.weight.requires_grad = False
self.reset_parameters()
if fan_in_fan_out:
self.weight.data = self.weight.data.transpose(0, 1)
def reset_parameters(self):
#nn.Linear.reset_parameters(self)
if hasattr(self, 'lora_A'):
# initialize B the same way as the default for nn.Linear and A to zero
# this is different than what is described in the paper but should not affect performance
nn.init.kaiming_uniform_(self.lora_A, a=math.sqrt(5))
nn.init.zeros_(self.lora_B)
# def train(self, mode: bool = True):
# def T(w):
# return w.transpose(0, 1) if self.fan_in_fan_out else w
# nn.Linear.train(self, mode)
# if mode:
# if self.merge_weights and self.merged:
# # Make sure that the weights are not merged
# if self.r > 0:
# self.weight.data -= T(self.lora_B @ self.lora_A) * self.scaling
# self.merged = False
# else:
# if self.merge_weights and not self.merged:
# # Merge the weights and mark it
# if self.r > 0:
# self.weight.data += T(self.lora_B @ self.lora_A) * self.scaling
# self.merged = True
def forward(self, x: torch.Tensor):
def T(w):
return w.transpose(0, 1) if self.fan_in_fan_out else w
if self.r > 0 and not self.merged:
result = F.linear(x, T(self.weight), bias=self.bias)
result += (self.lora_dropout(x) @ self.lora_A.transpose(0, 1) @ self.lora_B.transpose(0, 1)) * self.scaling
return result
else:
return F.linear(x, T(self.weight), bias=self.bias)
def make_2tuple(x):
if isinstance(x, tuple):
assert len(x) == 2
return x
assert isinstance(x, int)
return (x, x)
def drop_path(x, drop_prob: float = 0.0, training: bool = False):
if drop_prob == 0.0 or not training:
return x
keep_prob = 1 - drop_prob
shape = (x.shape[0],) + (1,) * (x.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
if keep_prob > 0.0:
random_tensor.div_(keep_prob)
output = x * random_tensor
return output
class DropPath(nn.Module):
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
def __init__(self, drop_prob=None):
super(DropPath, self).__init__()
self.drop_prob = drop_prob
def forward(self, x):
return drop_path(x, self.drop_prob, self.training)
class LayerScale(nn.Module):
def __init__(
self,
dim: int,
init_values: Union[float, Tensor] = 1e-5,
inplace: bool = False,
) -> None:
super().__init__()
self.inplace = inplace
self.gamma = nn.Parameter(init_values * torch.ones(dim))
def forward(self, x: Tensor) -> Tensor:
return x.mul_(self.gamma) if self.inplace else x * self.gamma
class PatchEmbed(nn.Module):
"""
2D image to patch embedding: (B,C,H,W) -> (B,N,D)
Args:
img_size: Image size.
patch_size: Patch token size.
in_chans: Number of input image channels.
embed_dim: Number of linear projection output channels.
norm_layer: Normalization layer.
"""
def __init__(
self,
img_size: Union[int, Tuple[int, int]] = 224,
patch_size: Union[int, Tuple[int, int]] = 16,
in_chans: int = 3,
embed_dim: int = 768,
norm_layer: Optional[Callable] = None,
flatten_embedding: bool = True,
tuning_mode: Optional[str] = None
) -> None:
super().__init__()
image_HW = make_2tuple(img_size)
patch_HW = make_2tuple(patch_size)
patch_grid_size = (
image_HW[0] // patch_HW[0],
image_HW[1] // patch_HW[1],
)
self.img_size = image_HW
self.patch_size = patch_HW
self.patches_resolution = patch_grid_size
self.num_patches = patch_grid_size[0] * patch_grid_size[1]
self.in_chans = in_chans
self.embed_dim = embed_dim
self.flatten_embedding = flatten_embedding
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW)
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()
if tuning_mode != None:
self.tuning_mode = tuning_mode
if tuning_mode == 'ssf':
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim)
else:
pass
#raise NotImplementedError()
else:
self.tuning_mode = None
def forward(self, x: Tensor) -> Tensor:
_, _, H, W = x.shape
patch_H, patch_W = self.patch_size
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}"
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}"
x = self.proj(x) # B C H W
H, W = x.size(2), x.size(3)
x = x.flatten(2).transpose(1, 2) # B HW C
x = self.norm(x)
if self.tuning_mode == 'ssf':
x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1)
if not self.flatten_embedding:
x = x.reshape(-1, H, W, self.embed_dim) # B H W C
return x
def flops(self) -> float:
Ho, Wo = self.patches_resolution
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1])
if self.norm is not None:
flops += Ho * Wo * self.embed_dim
return flops
class Mlp(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[..., nn.Module] = nn.GELU,
drop: float = 0.0,
bias: bool = True,
tuning_mode: Optional[int] = None
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
self.act = act_layer()
self.fc2 = nn.Linear(hidden_features, out_features, bias=bias)
self.drop = nn.Dropout(drop)
if tuning_mode != None:
self.tuning_mode = tuning_mode
if tuning_mode == 'ssf':
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(hidden_features)
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features)
else:
pass
#raise NotImplementedError()
else:
self.tuning_mode = None
def forward(self, x: Tensor) -> Tensor:
x = self.fc1(x)
if self.tuning_mode == 'ssf':
x = ssf_ada(x, self.ssf_scale_1, self.ssf_shift_1)
x = self.act(x)
x = self.drop(x)
x = self.fc2(x)
if self.tuning_mode == 'ssf':
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)
x = self.drop(x)
return x
class SwiGLUFFN(nn.Module):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[..., nn.Module] = None,
drop: float = 0.0,
bias: bool = True,
tuning_mode: Optional[int] = None
) -> None:
super().__init__()
out_features = out_features or in_features
hidden_features = hidden_features or in_features
self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias)
self.w3 = nn.Linear(hidden_features, out_features, bias=bias)
if tuning_mode != None:
self.tuning_mode = tuning_mode
if tuning_mode == 'ssf':
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(2 * hidden_features)
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(out_features)
else:
pass
#raise NotImplementedError()
else:
self.tuning_mode = None
def forward(self, x: Tensor) -> Tensor:
x12 = self.w12(x)
if self.tuning_mode == 'ssf':
x12 = ssf_ada(x12, self.ssf_scale_1, self.ssf_shift_1)
x1, x2 = x12.chunk(2, dim=-1)
hidden = F.silu(x1) * x2
out = self.w3(hidden)
if self.tuning_mode == 'ssf':
out = ssf_ada(out, self.ssf_scale_2, self.ssf_scale_2)
return out
try:
from xformers.ops import SwiGLU
#import numpy.bool
XFORMERS_AVAILABLE = True
except ImportError:
SwiGLU = SwiGLUFFN
XFORMERS_AVAILABLE = False
class SwiGLUFFNFused(SwiGLU):
def __init__(
self,
in_features: int,
hidden_features: Optional[int] = None,
out_features: Optional[int] = None,
act_layer: Callable[..., nn.Module] = None,
drop: float = 0.0,
bias: bool = True,
) -> None:
out_features = out_features or in_features
hidden_features = hidden_features or in_features
hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8
super().__init__(
in_features=in_features,
hidden_features=hidden_features,
out_features=out_features,
bias=bias,
)
try:
from xformers.ops import memory_efficient_attention, unbind, fmha
from xformers.components.attention import ScaledDotProduct
from xformers.components import MultiHeadDispatch
#import numpy.bool
XFORMERS_AVAILABLE = True
except ImportError:
logger.warning("xFormers not available")
XFORMERS_AVAILABLE = False
class Attention(nn.Module):
def __init__(
self,
dim: int,
num_heads: int = 8,
qkv_bias: bool = False,
proj_bias: bool = True,
attn_drop: float = 0.0,
proj_drop: float = 0.0,
window_size: int = 0,
tuning_mode: Optional[int] = None
) -> None:
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
if tuning_mode == 'lora':
self.tuning_mode = tuning_mode
self.qkv = LoRALinear(dim, dim * 3, bias=qkv_bias, r=8)
else:
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.attn_drop = nn.Dropout(attn_drop)
if tuning_mode == 'lora':
self.tuning_mode = tuning_mode
self.proj = LoRALinear(dim, dim, bias=proj_bias, r=8)
else:
self.proj = nn.Linear(dim, dim, bias=proj_bias)
self.proj_drop = nn.Dropout(proj_drop)
if tuning_mode != None:
self.tuning_mode = tuning_mode
if tuning_mode == 'ssf':
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim * 3)
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim)
else:
pass
#raise NotImplementedError()
else:
self.tuning_mode = None
#if not self.training:
#
# self.attn = ScaledDotProduct()
#self.attn = MultiHeadDispatch(dim_model=EMB, residual_dropout=DROPOUT, num_heads=HEADS, attention=attn)
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
B, N, C = x.shape
if self.tuning_mode == 'ssf':
qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
else:
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
q, k, v = qkv[0] * self.scale, qkv[1], qkv[2]
attn = q @ k.transpose(-2, -1)
if attn_bias is not None:
attn = attn + attn_bias[:, :, :N]
attn = attn.softmax(dim=-1)
attn = self.attn_drop(attn)
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
x = self.proj(x)
if self.tuning_mode == 'ssf':
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)
x = self.proj_drop(x)
return x
class MemEffAttention(Attention):
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
if not XFORMERS_AVAILABLE:
#if True:
assert attn_bias is None, "xFormers is required for nested tensors usage"
return super().forward(x, attn_bias)
B, N, C = x.shape
if self.tuning_mode == 'ssf':
qkv = ssf_ada(self.qkv(x), self.ssf_scale_1, self.ssf_shift_1).reshape(B, N, 3, self.num_heads, C // self.num_heads)
else:
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads)
q, k, v = unbind(qkv, 2)
if attn_bias is not None:
x = memory_efficient_attention(q, k, v, attn_bias=attn_bias[:, :, :N])
else:
x = memory_efficient_attention(q, k, v)
x = x.reshape([B, N, C])
x = self.proj(x)
if self.tuning_mode == 'ssf':
x = ssf_ada(x, self.ssf_scale_2, self.ssf_shift_2)
x = self.proj_drop(x)
return x
try:
from xformers.ops import fmha
from xformers.ops import scaled_index_add, index_select_cat
#import numpy.bool
XFORMERS_AVAILABLE = True
except ImportError:
logger.warning("xFormers not available")
XFORMERS_AVAILABLE = False
class Block(nn.Module):
def __init__(
self,
dim: int,
num_heads: int,
mlp_ratio: float = 4.0,
qkv_bias: bool = False,
proj_bias: bool = True,
ffn_bias: bool = True,
drop: float = 0.0,
attn_drop: float = 0.0,
init_values = None,
drop_path: float = 0.0,
act_layer: Callable[..., nn.Module] = nn.GELU,
norm_layer: Callable[..., nn.Module] = nn.LayerNorm,
attn_class: Callable[..., nn.Module] = Attention,
ffn_layer: Callable[..., nn.Module] = Mlp,
tuning_mode: Optional[int] = None
) -> None:
super().__init__()
# print(f"biases: qkv: {qkv_bias}, proj: {proj_bias}, ffn: {ffn_bias}")
self.norm1 = norm_layer(dim)
self.attn = attn_class(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
proj_bias=proj_bias,
attn_drop=attn_drop,
proj_drop=drop,
tuning_mode=tuning_mode
)
if tuning_mode != None:
self.tuning_mode = tuning_mode
if tuning_mode == 'ssf':
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(dim)
self.ssf_scale_2, self.ssf_shift_2 = init_ssf_scale_shift(dim)
else:
pass
#raise NotImplementedError()
else:
self.tuning_mode = None
self.ls1 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path1 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
mlp_hidden_dim = int(dim * mlp_ratio)
self.mlp = ffn_layer(
in_features=dim,
hidden_features=mlp_hidden_dim,
act_layer=act_layer,
drop=drop,
bias=ffn_bias,
)
self.ls2 = LayerScale(dim, init_values=init_values) if init_values else nn.Identity()
self.drop_path2 = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.sample_drop_ratio = drop_path
def forward(self, x: Tensor, attn_bias=None) -> Tensor:
def attn_residual_func(x: Tensor, attn_bias) -> Tensor:
if self.tuning_mode == 'ssf':
return self.ls1(self.attn(ssf_ada(self.norm1(x), self.ssf_scale_1, self.ssf_shift_1), attn_bias))
else:
return self.ls1(self.attn(self.norm1(x), attn_bias))
def ffn_residual_func(x: Tensor) -> Tensor:
if self.tuning_mode == 'ssf':
return self.ls2(self.mlp(ssf_ada(self.norm2(x), self.ssf_scale_2, self.ssf_shift_2)))
else:
return self.ls2(self.mlp(self.norm2(x)))
if self.training and self.sample_drop_ratio > 0.1:
# the overhead is compensated only for a drop path rate larger than 0.1
x = drop_add_residual_stochastic_depth(
x,
residual_func=attn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
attn_bias=attn_bias
)
x = drop_add_residual_stochastic_depth(
x,
residual_func=ffn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
)
elif self.training and self.sample_drop_ratio > 0.0:
x = x + self.drop_path1(attn_residual_func(x, attn_bias))
x = x + self.drop_path1(ffn_residual_func(x)) # FIXME: drop_path2
else:
x = x + attn_residual_func(x, attn_bias)
x = x + ffn_residual_func(x)
return x
def drop_add_residual_stochastic_depth(
x: Tensor,
residual_func: Callable[[Tensor], Tensor],
sample_drop_ratio: float = 0.0, attn_bias=None
) -> Tensor:
# 1) extract subset using permutation
b, n, d = x.shape
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
x_subset = x[brange]
# 2) apply residual_func to get residual
residual = residual_func(x_subset, attn_bias)
x_flat = x.flatten(1)
residual = residual.flatten(1)
residual_scale_factor = b / sample_subset_size
# 3) add the residual
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
return x_plus_residual.view_as(x)
def get_branges_scales(x, sample_drop_ratio=0.0):
b, n, d = x.shape
sample_subset_size = max(int(b * (1 - sample_drop_ratio)), 1)
brange = (torch.randperm(b, device=x.device))[:sample_subset_size]
residual_scale_factor = b / sample_subset_size
return brange, residual_scale_factor
def add_residual(x, brange, residual, residual_scale_factor, scaling_vector=None):
if scaling_vector is None:
x_flat = x.flatten(1)
residual = residual.flatten(1)
x_plus_residual = torch.index_add(x_flat, 0, brange, residual.to(dtype=x.dtype), alpha=residual_scale_factor)
else:
x_plus_residual = scaled_index_add(
x, brange, residual.to(dtype=x.dtype), scaling=scaling_vector, alpha=residual_scale_factor
)
return x_plus_residual
attn_bias_cache: Dict[Tuple, Any] = {}
def get_attn_bias_and_cat(x_list, branges=None):
"""
this will perform the index select, cat the tensors, and provide the attn_bias from cache
"""
batch_sizes = [b.shape[0] for b in branges] if branges is not None else [x.shape[0] for x in x_list]
all_shapes = tuple((b, x.shape[1]) for b, x in zip(batch_sizes, x_list))
if all_shapes not in attn_bias_cache.keys():
seqlens = []
for b, x in zip(batch_sizes, x_list):
for _ in range(b):
seqlens.append(x.shape[1])
attn_bias = fmha.BlockDiagonalMask.from_seqlens(seqlens)
attn_bias._batch_sizes = batch_sizes
attn_bias_cache[all_shapes] = attn_bias
if branges is not None:
cat_tensors = index_select_cat([x.flatten(1) for x in x_list], branges).view(1, -1, x_list[0].shape[-1])
else:
tensors_bs1 = tuple(x.reshape([1, -1, *x.shape[2:]]) for x in x_list)
cat_tensors = torch.cat(tensors_bs1, dim=1)
return attn_bias_cache[all_shapes], cat_tensors
def drop_add_residual_stochastic_depth_list(
x_list: List[Tensor],
residual_func: Callable[[Tensor, Any], Tensor],
sample_drop_ratio: float = 0.0,
scaling_vector=None,
) -> Tensor:
# 1) generate random set of indices for dropping samples in the batch
branges_scales = [get_branges_scales(x, sample_drop_ratio=sample_drop_ratio) for x in x_list]
branges = [s[0] for s in branges_scales]
residual_scale_factors = [s[1] for s in branges_scales]
# 2) get attention bias and index+concat the tensors
attn_bias, x_cat = get_attn_bias_and_cat(x_list, branges)
# 3) apply residual_func to get residual, and split the result
residual_list = attn_bias.split(residual_func(x_cat, attn_bias=attn_bias)) # type: ignore
outputs = []
for x, brange, residual, residual_scale_factor in zip(x_list, branges, residual_list, residual_scale_factors):
outputs.append(add_residual(x, brange, residual, residual_scale_factor, scaling_vector).view_as(x))
return outputs
class NestedTensorBlock(Block):
def forward_nested(self, x_list: List[Tensor]) -> List[Tensor]:
"""
x_list contains a list of tensors to nest together and run
"""
assert isinstance(self.attn, MemEffAttention)
if self.training and self.sample_drop_ratio > 0.0:
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.attn(self.norm1(x), attn_bias=attn_bias)
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.mlp(self.norm2(x))
x_list = drop_add_residual_stochastic_depth_list(
x_list,
residual_func=attn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
scaling_vector=self.ls1.gamma if isinstance(self.ls1, LayerScale) else None,
)
x_list = drop_add_residual_stochastic_depth_list(
x_list,
residual_func=ffn_residual_func,
sample_drop_ratio=self.sample_drop_ratio,
scaling_vector=self.ls2.gamma if isinstance(self.ls1, LayerScale) else None,
)
return x_list
else:
def attn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.ls1(self.attn(self.norm1(x), attn_bias=attn_bias))
def ffn_residual_func(x: Tensor, attn_bias=None) -> Tensor:
return self.ls2(self.mlp(self.norm2(x)))
attn_bias, x = get_attn_bias_and_cat(x_list)
x = x + attn_residual_func(x, attn_bias=attn_bias)
x = x + ffn_residual_func(x)
return attn_bias.split(x)
def forward(self, x_or_x_list, attn_bias=None):
if isinstance(x_or_x_list, Tensor):
return super().forward(x_or_x_list, attn_bias)
elif isinstance(x_or_x_list, list):
assert XFORMERS_AVAILABLE, "Please install xFormers for nested tensors usage"
return self.forward_nested(x_or_x_list)
else:
raise AssertionError
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module:
if not depth_first and include_root:
fn(module=module, name=name)
for child_name, child_module in module.named_children():
child_name = ".".join((name, child_name)) if name else child_name
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True)
if depth_first and include_root:
fn(module=module, name=name)
return module
class BlockChunk(nn.ModuleList):
def forward(self, x, others=None):
for b in self:
if others == None:
x = b(x)
else:
x = b(x, others)
return x
class DinoVisionTransformer(nn.Module):
def __init__(
self,
img_size=518,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
ffn_bias=True,
proj_bias=True,
drop_path_rate=0.0,
drop_path_uniform=False,
init_values=1e-5, # for layerscale: None or 0 => no layerscale
embed_layer=PatchEmbed,
act_layer=nn.GELU,
block_fn=Block,
ffn_layer="mlp",
block_chunks=1,
num_register_tokens=0,
interpolate_antialias=False,
interpolate_offset=0.1,
tuning_mode=None,
**kwargs
):
"""
Args:
img_size (int, tuple): input image size
patch_size (int, tuple): patch size
in_chans (int): number of input channels
embed_dim (int): embedding dimension
depth (int): depth of transformer
num_heads (int): number of attention heads
mlp_ratio (int): ratio of mlp hidden dim to embedding dim
qkv_bias (bool): enable bias for qkv if True
proj_bias (bool): enable bias for proj in attn if True
ffn_bias (bool): enable bias for ffn if True
drop_path_rate (float): stochastic depth rate
drop_path_uniform (bool): apply uniform drop rate across blocks
weight_init (str): weight init scheme
init_values (float): layer-scale init values
embed_layer (nn.Module): patch embedding layer
act_layer (nn.Module): MLP activation layer
block_fn (nn.Module): transformer block class
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity"
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap
num_register_tokens: (int) number of extra cls tokens (so-called "registers")
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings
"""
super().__init__()
norm_layer = partial(nn.LayerNorm, eps=1e-6)
self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models
self.num_tokens = 1
self.n_blocks = depth
self.num_heads = num_heads
self.patch_size = patch_size
self.num_register_tokens = num_register_tokens
self.interpolate_antialias = interpolate_antialias
self.interpolate_offset = interpolate_offset
if tuning_mode != None:
self.tuning_mode = tuning_mode
if tuning_mode == 'ssf':
self.ssf_scale_1, self.ssf_shift_1 = init_ssf_scale_shift(embed_dim)
else:
pass
#raise NotImplementedError()
else:
self.tuning_mode = None
tuning_mode_list = [tuning_mode] * depth
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, tuning_mode=tuning_mode)
num_patches = self.patch_embed.num_patches
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))
assert num_register_tokens >= 0
self.register_tokens = (
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None
)
if drop_path_uniform is True:
dpr = [drop_path_rate] * depth
else:
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule
if ffn_layer == "mlp":
logger.info("using MLP layer as FFN")
ffn_layer = Mlp
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu":
logger.info("using SwiGLU layer as FFN")
ffn_layer = SwiGLUFFNFused
elif ffn_layer == "identity":
logger.info("using Identity layer as FFN")
def f(*args, **kwargs):
return nn.Identity()
ffn_layer = f
else:
raise NotImplementedError
blocks_list = [
block_fn(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
proj_bias=proj_bias,
ffn_bias=ffn_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
ffn_layer=ffn_layer,
init_values=init_values,
tuning_mode=tuning_mode_list[i]
)
for i in range(depth)
]
if block_chunks > 0:
self.chunked_blocks = True
chunked_blocks = []
chunksize = depth // block_chunks
for i in range(0, depth, chunksize):
# this is to keep the block index consistent if we chunk the block list
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize])
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks])
else:
self.chunked_blocks = False
self.blocks = nn.ModuleList(blocks_list)
self.norm = norm_layer(embed_dim)
self.head = nn.Identity()
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim))
self.init_weights()
def init_weights(self):
trunc_normal_(self.pos_embed, std=0.02)
nn.init.normal_(self.cls_token, std=1e-6)
if self.register_tokens is not None:
nn.init.normal_(self.register_tokens, std=1e-6)
named_apply(init_weights_vit_timm, self)
def interpolate_pos_encoding(self, x, w, h):
previous_dtype = x.dtype
npatch = x.shape[1] - 1
N = self.pos_embed.shape[1] - 1
if npatch == N and w == h:
return self.pos_embed
pos_embed = self.pos_embed.float()
class_pos_embed = pos_embed[:, 0]
patch_pos_embed = pos_embed[:, 1:]
dim = x.shape[-1]
w0 = w // self.patch_size
h0 = h // self.patch_size
# we add a small number to avoid floating point error in the interpolation
# see discussion at https://github.com/facebookresearch/dino/issues/8
w0, h0 = w0 + self.interpolate_offset, h0 + self.interpolate_offset
sqrt_N = math.sqrt(N)
sx, sy = float(w0) / sqrt_N, float(h0) / sqrt_N
patch_pos_embed = nn.functional.interpolate(
patch_pos_embed.reshape(1, int(sqrt_N), int(sqrt_N), dim).permute(0, 3, 1, 2),
scale_factor=(sx, sy),
mode="bicubic",
antialias=self.interpolate_antialias,
)
assert int(w0) == patch_pos_embed.shape[-2]
assert int(h0) == patch_pos_embed.shape[-1]
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim)
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype)
def prepare_tokens_with_masks(self, x, masks=None):
B, nc, w, h = x.shape
x = self.patch_embed(x)
if masks is not None:
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x)
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1)
x = x + self.interpolate_pos_encoding(x, w, h)
if self.register_tokens is not None:
x = torch.cat(
(
x[:, :1],
self.register_tokens.expand(x.shape[0], -1, -1),
x[:, 1:],
),
dim=1,
)
return x
def forward_features_list(self, x_list, masks_list):
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)]
for blk in self.blocks:
x = blk(x)
all_x = x
output = []
for x, masks in zip(all_x, masks_list):
x_norm = self.norm(x)
output.append(
{
"x_norm_clstoken": x_norm[:, 0],
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
"x_prenorm": x,
"masks": masks,
}
)
return output
def forward_features(self, x, masks=None):
if isinstance(x, list):
return self.forward_features_list(x, masks)
B, C, H, W = x.size()
pad_h = (self.patch_size - H % self.patch_size)
pad_w = (self.patch_size - W % self.patch_size)
if pad_h == self.patch_size:
pad_h = 0
if pad_w == self.patch_size:
pad_w = 0
#x = nn.functional.pad(x, (pad_h//2, pad_h-pad_h//2, pad_w//2, pad_w-pad_w//2))
if pad_h + pad_w > 0:
x = torch.nn.functional.interpolate(x, (H+pad_h, W+pad_w), mode='bilinear')
x = self.prepare_tokens_with_masks(x, masks)
for blk in self.blocks:
x = blk(x)
x_norm = self.norm(x)
if self.tuning_mode == 'ssf':
x_norm = ssf_ada(x_norm, self.ssf_scale_1, self.ssf_shift_1)
# return {
# "x_norm_clstoken": x_norm[:, 0],
# "x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1],
# "x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :],
# "x_prenorm": x,
# "masks": masks,
# }
features = []
features.append(x_norm)
features.append(x_norm)
features.append(x_norm)
features.append(x_norm)
return [features, (B, (H+pad_h)//self.patch_size, (W+pad_w)//self.patch_size, H, W, self.num_register_tokens)]
def _get_intermediate_layers_not_chunked(self, x, n=1):
x = self.prepare_tokens_with_masks(x)
# If n is an int, take the n last blocks. If it's a list, take them
output, total_block_len = [], len(self.blocks)
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
for i, blk in enumerate(self.blocks):
x = blk(x)
if i in blocks_to_take:
output.append(x)
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
return output
def _get_intermediate_layers_chunked(self, x, n=1):
x = self.prepare_tokens_with_masks(x)
output, i, total_block_len = [], 0, len(self.blocks[-1])
# If n is an int, take the n last blocks. If it's a list, take them
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n
for block_chunk in self.blocks:
for blk in block_chunk[i:]: # Passing the nn.Identity()
x = blk(x)
if i in blocks_to_take:
output.append(x)
i += 1
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found"
return output
def get_intermediate_layers(
self,
x: torch.Tensor,
n: Union[int, Sequence] = 1, # Layers or n last layers to take
reshape: bool = False,
return_class_token: bool = False,
norm=True,
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]:
if self.chunked_blocks:
outputs = self._get_intermediate_layers_chunked(x, n)
else:
outputs = self._get_intermediate_layers_not_chunked(x, n)
if norm:
outputs = [self.norm(out) for out in outputs]
class_tokens = [out[:, 0] for out in outputs]
outputs = [out[:, 1:] for out in outputs]
if reshape:
B, _, w, h = x.shape
outputs = [
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous()
for out in outputs
]
if return_class_token:
return tuple(zip(outputs, class_tokens))
return tuple(outputs)
def forward(self, *args, is_training=False, **kwargs):
ret = self.forward_features(*args, **kwargs)
return ret
# if is_training:
# return ret
# else:
# return self.head(ret["x_norm_clstoken"])
def init_weights_vit_timm(module: nn.Module, name: str = ""):
"""ViT weight initialization, original timm impl (for reproducibility)"""
if isinstance(module, nn.Linear):
trunc_normal_(module.weight, std=0.02)
if module.bias is not None:
nn.init.zeros_(module.bias)
def load_ckpt_dino(checkpoint, model):
if checkpoint is not None:
try:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
except:
print('NO pretrained imagenet ckpt available! Check your path!')
del model.mask_token
return
try:
model.load_state_dict(state_dict, strict=True)
except:
new_state_dict = {}
for key, value in state_dict.items():
if 'blocks' in key:
key_new = 'blocks.0' + key[len('blocks'):]
else:
key_new = key
new_state_dict[key_new] = value
model.load_state_dict(new_state_dict, strict=True)
del model.mask_token
return
else:
return
def vit_small(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
load_ckpt_dino(checkpoint, model)
return model
def vit_base(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
return model
def vit_large(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
if checkpoint is not None:
with open(checkpoint, "rb") as f:
state_dict = torch.load(f)
try:
model.load_state_dict(state_dict, strict=True)
except:
new_state_dict = {}
for key, value in state_dict.items():
if 'blocks' in key:
key_new = 'blocks.0' + key[len('blocks'):]
else:
key_new = key
new_state_dict[key_new] = value
model.load_state_dict(new_state_dict, strict=True)
del model.mask_token
return model
def vit_giant2(patch_size=14, num_register_tokens=0, checkpoint=None, **kwargs):
"""
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
"""
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=1536,
depth=40,
num_heads=24,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
ffn_layer='swiglu',
**kwargs,
)
return model
def vit_small_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=384,
depth=12,
num_heads=6,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
tuning_mode=tuning_mode,
**kwargs,
)
load_ckpt_dino(checkpoint, model)
return model
def vit_base_reg(patch_size=14, num_register_tokens=4, checkpoint=None, **kwargs):
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
**kwargs,
)
load_ckpt_dino(checkpoint, model)
return model
def vit_large_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
model = DinoVisionTransformer(
img_size = 518,
patch_size=patch_size,
embed_dim=1024,
depth=24,
num_heads=16,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
tuning_mode=tuning_mode,
**kwargs,
)
load_ckpt_dino(checkpoint, model)
return model
def vit_giant2_reg(patch_size=14, num_register_tokens=4, checkpoint=None, tuning_mode=None, **kwargs):
"""
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64
"""
model = DinoVisionTransformer(
patch_size=patch_size,
embed_dim=1536,
depth=40,
num_heads=24,
mlp_ratio=4,
block_fn=partial(Block, attn_class=MemEffAttention),
num_register_tokens=num_register_tokens,
ffn_layer='swiglu',
tuning_mode=tuning_mode,
**kwargs,
)
load_ckpt_dino(checkpoint, model)
return model
if __name__ == '__main__':
try:
from mmcv.utils import Config
except:
from mmengine import Config
#rgb = torch.rand((2, 3, 518, 518)).cuda()
#cfg.data_basic['crop_size']['0']
#cfg.data_basic['crop_size']['1']
cfg = Config.fromfile('/opt/ml/project/mu.hu/projects/monodepth_vit/mono/configs/RAFTDecoder/vit.raft5.large.kitti.py')
#rgb = torch.arange(0, 2*3*1036*1036, 1).cuda().float().view(2, 3, 1036, 1036)
rgb = torch.zeros(1, 3, 616, 1064).cuda()
cfg['tuning_mode'] = 'ssf'
#model = vit_large_reg(checkpoint="/cpfs02/shared/public/groups/local_map/yvan/pretrained_weight_repo/vit/dinov2_vitl14_reg4_pretrain.pth", kwarg=cfg).cuda()
model = vit_large_reg(tuning_mode='ssf').cuda()
#import timm
#model2 = timm.models.vision_transformer.vit_large_patch14_dinov2().cuda()
#timm.models.load_checkpoint(model2, '/cpfs02/shared/public/yvan/pretrained_weight_repo/vit/dinov2_vitl14_pretrain.pth', filter_fn=timm.models.vision_transformer.checkpoint_filter_fn)
out1 = model(rgb)
#out2 = model2(rgb)
temp = 0