|
|
import gradio as gr |
|
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
client = InferenceClient("mistralai/Mistral-7B-v0.1") |
|
|
|
|
|
|
|
|
fixed_temperature = 0.9 |
|
|
|
|
|
def generate(prompt, max_new_tokens=6056, top_p=0.95, repetition_penalty=1.0): |
|
|
top_p = float(top_p) |
|
|
|
|
|
generate_kwargs = dict( |
|
|
temperature=fixed_temperature, |
|
|
max_new_tokens=max_new_tokens, |
|
|
top_p=top_p, |
|
|
repetition_penalty=repetition_penalty, |
|
|
do_sample=True, |
|
|
seed=42, |
|
|
) |
|
|
|
|
|
formatted_prompt = f"<s>[INST] {prompt} [/INST]" |
|
|
|
|
|
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False) |
|
|
output = "" |
|
|
|
|
|
for response in stream: |
|
|
output += response.token.text |
|
|
yield output |
|
|
return output |
|
|
|
|
|
iface = gr.Interface( |
|
|
fn=generate, |
|
|
inputs="text", |
|
|
outputs="text", |
|
|
title="Mistralai-Mistral-7B-Instruct Chat", |
|
|
live=False |
|
|
) |
|
|
|
|
|
iface.launch() |