Spaces:
Configuration error
Configuration error
| # Copyright 2024 Alibaba DAMO-VILAB and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import inspect | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection | |
| from ...image_processor import PipelineImageInput, VaeImageProcessor | |
| from ...models import AutoencoderKL | |
| from ...models.unets.unet_i2vgen_xl import I2VGenXLUNet | |
| from ...schedulers import DDIMScheduler | |
| from ...utils import ( | |
| BaseOutput, | |
| logging, | |
| replace_example_docstring, | |
| ) | |
| from ...utils.torch_utils import randn_tensor | |
| from ..pipeline_utils import DiffusionPipeline, StableDiffusionMixin | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import I2VGenXLPipeline | |
| >>> from diffusers.utils import export_to_gif, load_image | |
| >>> pipeline = I2VGenXLPipeline.from_pretrained( | |
| ... "ali-vilab/i2vgen-xl", torch_dtype=torch.float16, variant="fp16" | |
| ... ) | |
| >>> pipeline.enable_model_cpu_offload() | |
| >>> image_url = ( | |
| ... "https://huggingface.co/datasets/diffusers/docs-images/resolve/main/i2vgen_xl_images/img_0009.png" | |
| ... ) | |
| >>> image = load_image(image_url).convert("RGB") | |
| >>> prompt = "Papers were floating in the air on a table in the library" | |
| >>> negative_prompt = "Distorted, discontinuous, Ugly, blurry, low resolution, motionless, static, disfigured, disconnected limbs, Ugly faces, incomplete arms" | |
| >>> generator = torch.manual_seed(8888) | |
| >>> frames = pipeline( | |
| ... prompt=prompt, | |
| ... image=image, | |
| ... num_inference_steps=50, | |
| ... negative_prompt=negative_prompt, | |
| ... guidance_scale=9.0, | |
| ... generator=generator, | |
| ... ).frames[0] | |
| >>> video_path = export_to_gif(frames, "i2v.gif") | |
| ``` | |
| """ | |
| # Copied from diffusers.pipelines.animatediff.pipeline_animatediff.tensor2vid | |
| def tensor2vid(video: torch.Tensor, processor: "VaeImageProcessor", output_type: str = "np"): | |
| batch_size, channels, num_frames, height, width = video.shape | |
| outputs = [] | |
| for batch_idx in range(batch_size): | |
| batch_vid = video[batch_idx].permute(1, 0, 2, 3) | |
| batch_output = processor.postprocess(batch_vid, output_type) | |
| outputs.append(batch_output) | |
| if output_type == "np": | |
| outputs = np.stack(outputs) | |
| elif output_type == "pt": | |
| outputs = torch.stack(outputs) | |
| elif not output_type == "pil": | |
| raise ValueError(f"{output_type} does not exist. Please choose one of ['np', 'pt', 'pil']") | |
| return outputs | |
| class I2VGenXLPipelineOutput(BaseOutput): | |
| r""" | |
| Output class for image-to-video pipeline. | |
| Args: | |
| frames (`torch.Tensor`, `np.ndarray`, or List[List[PIL.Image.Image]]): | |
| List of video outputs - It can be a nested list of length `batch_size,` with each sub-list containing | |
| denoised | |
| PIL image sequences of length `num_frames.` It can also be a NumPy array or Torch tensor of shape | |
| `(batch_size, num_frames, channels, height, width)` | |
| """ | |
| frames: Union[torch.Tensor, np.ndarray, List[List[PIL.Image.Image]]] | |
| class I2VGenXLPipeline( | |
| DiffusionPipeline, | |
| StableDiffusionMixin, | |
| ): | |
| r""" | |
| Pipeline for image-to-video generation as proposed in [I2VGenXL](https://i2vgen-xl.github.io/). | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods | |
| implemented for all pipelines (downloading, saving, running on a particular device, etc.). | |
| Args: | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder ([clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14)). | |
| tokenizer (`CLIPTokenizer`): | |
| A [`~transformers.CLIPTokenizer`] to tokenize text. | |
| unet ([`I2VGenXLUNet`]): | |
| A [`I2VGenXLUNet`] to denoise the encoded video latents. | |
| scheduler ([`DDIMScheduler`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. | |
| """ | |
| model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae" | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor: CLIPImageProcessor, | |
| unet: I2VGenXLUNet, | |
| scheduler: DDIMScheduler, | |
| ): | |
| super().__init__() | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| image_encoder=image_encoder, | |
| feature_extractor=feature_extractor, | |
| unet=unet, | |
| scheduler=scheduler, | |
| ) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| # `do_resize=False` as we do custom resizing. | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor, do_resize=False) | |
| def guidance_scale(self): | |
| return self._guidance_scale | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| def do_classifier_free_guidance(self): | |
| return self._guidance_scale > 1 | |
| def encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_videos_per_prompt, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| device: (`torch.device`): | |
| torch device | |
| num_videos_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = self.tokenizer.batch_decode( | |
| untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] | |
| ) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {self.tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| if clip_skip is None: | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask) | |
| prompt_embeds = prompt_embeds[0] | |
| else: | |
| prompt_embeds = self.text_encoder( | |
| text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
| ) | |
| # Access the `hidden_states` first, that contains a tuple of | |
| # all the hidden states from the encoder layers. Then index into | |
| # the tuple to access the hidden states from the desired layer. | |
| prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)] | |
| # We also need to apply the final LayerNorm here to not mess with the | |
| # representations. The `last_hidden_states` that we typically use for | |
| # obtaining the final prompt representations passes through the LayerNorm | |
| # layer. | |
| prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds) | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
| # get unconditional embeddings for classifier free guidance | |
| if self.do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: | |
| uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif isinstance(negative_prompt, str): | |
| uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = negative_prompt | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer( | |
| uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| # Apply clip_skip to negative prompt embeds | |
| if clip_skip is None: | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), | |
| attention_mask=attention_mask, | |
| ) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| else: | |
| negative_prompt_embeds = self.text_encoder( | |
| uncond_input.input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True | |
| ) | |
| # Access the `hidden_states` first, that contains a tuple of | |
| # all the hidden states from the encoder layers. Then index into | |
| # the tuple to access the hidden states from the desired layer. | |
| negative_prompt_embeds = negative_prompt_embeds[-1][-(clip_skip + 1)] | |
| # We also need to apply the final LayerNorm here to not mess with the | |
| # representations. The `last_hidden_states` that we typically use for | |
| # obtaining the final prompt representations passes through the LayerNorm | |
| # layer. | |
| negative_prompt_embeds = self.text_encoder.text_model.final_layer_norm(negative_prompt_embeds) | |
| if self.do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_videos_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1) | |
| return prompt_embeds, negative_prompt_embeds | |
| def _encode_image(self, image, device, num_videos_per_prompt): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.image_processor.pil_to_numpy(image) | |
| image = self.image_processor.numpy_to_pt(image) | |
| # Normalize the image with CLIP training stats. | |
| image = self.feature_extractor( | |
| images=image, | |
| do_normalize=True, | |
| do_center_crop=False, | |
| do_resize=False, | |
| do_rescale=False, | |
| return_tensors="pt", | |
| ).pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeddings = self.image_encoder(image).image_embeds | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_videos_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_videos_per_prompt, seq_len, -1) | |
| if self.do_classifier_free_guidance: | |
| negative_image_embeddings = torch.zeros_like(image_embeddings) | |
| image_embeddings = torch.cat([negative_image_embeddings, image_embeddings]) | |
| return image_embeddings | |
| def decode_latents(self, latents, decode_chunk_size=None): | |
| latents = 1 / self.vae.config.scaling_factor * latents | |
| batch_size, channels, num_frames, height, width = latents.shape | |
| latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * num_frames, channels, height, width) | |
| if decode_chunk_size is not None: | |
| frames = [] | |
| for i in range(0, latents.shape[0], decode_chunk_size): | |
| frame = self.vae.decode(latents[i : i + decode_chunk_size]).sample | |
| frames.append(frame) | |
| image = torch.cat(frames, dim=0) | |
| else: | |
| image = self.vae.decode(latents).sample | |
| decode_shape = (batch_size, num_frames, -1) + image.shape[2:] | |
| video = image[None, :].reshape(decode_shape).permute(0, 2, 1, 3, 4) | |
| # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 | |
| video = video.float() | |
| return video | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| image, | |
| height, | |
| width, | |
| negative_prompt=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if ( | |
| not isinstance(image, torch.Tensor) | |
| and not isinstance(image, PIL.Image.Image) | |
| and not isinstance(image, list) | |
| ): | |
| raise ValueError( | |
| "`image` has to be of type `torch.FloatTensor` or `PIL.Image.Image` or `List[PIL.Image.Image]` but is" | |
| f" {type(image)}" | |
| ) | |
| def prepare_image_latents( | |
| self, | |
| image, | |
| device, | |
| num_frames, | |
| num_videos_per_prompt, | |
| ): | |
| image = image.to(device=device) | |
| image_latents = self.vae.encode(image).latent_dist.sample() | |
| image_latents = image_latents * self.vae.config.scaling_factor | |
| # Add frames dimension to image latents | |
| image_latents = image_latents.unsqueeze(2) | |
| # Append a position mask for each subsequent frame | |
| # after the intial image latent frame | |
| frame_position_mask = [] | |
| for frame_idx in range(num_frames - 1): | |
| scale = (frame_idx + 1) / (num_frames - 1) | |
| frame_position_mask.append(torch.ones_like(image_latents[:, :, :1]) * scale) | |
| if frame_position_mask: | |
| frame_position_mask = torch.cat(frame_position_mask, dim=2) | |
| image_latents = torch.cat([image_latents, frame_position_mask], dim=2) | |
| # duplicate image_latents for each generation per prompt, using mps friendly method | |
| image_latents = image_latents.repeat(num_videos_per_prompt, 1, 1, 1, 1) | |
| if self.do_classifier_free_guidance: | |
| image_latents = torch.cat([image_latents] * 2) | |
| return image_latents | |
| # Copied from diffusers.pipelines.text_to_video_synthesis.pipeline_text_to_video_synth.TextToVideoSDPipeline.prepare_latents | |
| def prepare_latents( | |
| self, batch_size, num_channels_latents, num_frames, height, width, dtype, device, generator, latents=None | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| num_frames, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if latents is None: | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| else: | |
| latents = latents.to(device) | |
| # scale the initial noise by the standard deviation required by the scheduler | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def __call__( | |
| self, | |
| prompt: Union[str, List[str]] = None, | |
| image: PipelineImageInput = None, | |
| height: Optional[int] = 704, | |
| width: Optional[int] = 1280, | |
| target_fps: Optional[int] = 16, | |
| num_frames: int = 16, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 9.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| eta: float = 0.0, | |
| num_videos_per_prompt: Optional[int] = 1, | |
| decode_chunk_size: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| clip_skip: Optional[int] = 1, | |
| ): | |
| r""" | |
| The call function to the pipeline for image-to-video generation with [`I2VGenXLPipeline`]. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`. | |
| image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.FloatTensor`): | |
| Image or images to guide image generation. If you provide a tensor, it needs to be compatible with | |
| [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| target_fps (`int`, *optional*): | |
| Frames per second. The rate at which the generated images shall be exported to a video after | |
| generation. This is also used as a "micro-condition" while generation. | |
| num_frames (`int`, *optional*): | |
| The number of video frames to generate. | |
| num_inference_steps (`int`, *optional*): | |
| The number of denoising steps. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide what to not include in image generation. If not defined, you need to | |
| pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`). | |
| eta (`float`, *optional*): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| num_videos_per_prompt (`int`, *optional*): | |
| The number of images to generate per prompt. | |
| decode_chunk_size (`int`, *optional*): | |
| The number of frames to decode at a time. The higher the chunk size, the higher the temporal | |
| consistency between frames, but also the higher the memory consumption. By default, the decoder will | |
| decode all frames at once for maximal quality. Reduce `decode_chunk_size` to reduce memory usage. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not | |
| provided, text embeddings are generated from the `prompt` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If | |
| not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in | |
| [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| Examples: | |
| Returns: | |
| [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`pipelines.i2vgen_xl.pipeline_i2vgen_xl.I2VGenXLPipelineOutput`] is | |
| returned, otherwise a `tuple` is returned where the first element is a list with the generated frames. | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(prompt, image, height, width, negative_prompt, prompt_embeds, negative_prompt_embeds) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| self._guidance_scale = guidance_scale | |
| # 3.1 Encode input text prompt | |
| prompt_embeds, negative_prompt_embeds = self.encode_prompt( | |
| prompt, | |
| device, | |
| num_videos_per_prompt, | |
| negative_prompt, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| clip_skip=clip_skip, | |
| ) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| if self.do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| # 3.2 Encode image prompt | |
| # 3.2.1 Image encodings. | |
| # https://github.com/ali-vilab/i2vgen-xl/blob/2539c9262ff8a2a22fa9daecbfd13f0a2dbc32d0/tools/inferences/inference_i2vgen_entrance.py#L114 | |
| cropped_image = _center_crop_wide(image, (width, width)) | |
| cropped_image = _resize_bilinear( | |
| cropped_image, (self.feature_extractor.crop_size["width"], self.feature_extractor.crop_size["height"]) | |
| ) | |
| image_embeddings = self._encode_image(cropped_image, device, num_videos_per_prompt) | |
| # 3.2.2 Image latents. | |
| resized_image = _center_crop_wide(image, (width, height)) | |
| image = self.image_processor.preprocess(resized_image).to(device=device, dtype=image_embeddings.dtype) | |
| image_latents = self.prepare_image_latents( | |
| image, | |
| device=device, | |
| num_frames=num_frames, | |
| num_videos_per_prompt=num_videos_per_prompt, | |
| ) | |
| # 3.3 Prepare additional conditions for the UNet. | |
| if self.do_classifier_free_guidance: | |
| fps_tensor = torch.tensor([target_fps, target_fps]).to(device) | |
| else: | |
| fps_tensor = torch.tensor([target_fps]).to(device) | |
| fps_tensor = fps_tensor.repeat(batch_size * num_videos_per_prompt, 1).ravel() | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_videos_per_prompt, | |
| num_channels_latents, | |
| num_frames, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| fps=fps_tensor, | |
| image_latents=image_latents, | |
| image_embeddings=image_embeddings, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| # perform guidance | |
| if self.do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # reshape latents | |
| batch_size, channel, frames, width, height = latents.shape | |
| latents = latents.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) | |
| noise_pred = noise_pred.permute(0, 2, 1, 3, 4).reshape(batch_size * frames, channel, width, height) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # reshape latents back | |
| latents = latents[None, :].reshape(batch_size, frames, channel, width, height).permute(0, 2, 1, 3, 4) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| # 8. Post processing | |
| if output_type == "latent": | |
| video = latents | |
| else: | |
| video_tensor = self.decode_latents(latents, decode_chunk_size=decode_chunk_size) | |
| video = tensor2vid(video_tensor, self.image_processor, output_type=output_type) | |
| # 9. Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (video,) | |
| return I2VGenXLPipelineOutput(frames=video) | |
| # The following utilities are taken and adapted from | |
| # https://github.com/ali-vilab/i2vgen-xl/blob/main/utils/transforms.py. | |
| def _convert_pt_to_pil(image: Union[torch.Tensor, List[torch.Tensor]]): | |
| if isinstance(image, list) and isinstance(image[0], torch.Tensor): | |
| image = torch.cat(image, 0) | |
| if isinstance(image, torch.Tensor): | |
| if image.ndim == 3: | |
| image = image.unsqueeze(0) | |
| image_numpy = VaeImageProcessor.pt_to_numpy(image) | |
| image_pil = VaeImageProcessor.numpy_to_pil(image_numpy) | |
| image = image_pil | |
| return image | |
| def _resize_bilinear( | |
| image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int] | |
| ): | |
| # First convert the images to PIL in case they are float tensors (only relevant for tests now). | |
| image = _convert_pt_to_pil(image) | |
| if isinstance(image, list): | |
| image = [u.resize(resolution, PIL.Image.BILINEAR) for u in image] | |
| else: | |
| image = image.resize(resolution, PIL.Image.BILINEAR) | |
| return image | |
| def _center_crop_wide( | |
| image: Union[torch.Tensor, List[torch.Tensor], PIL.Image.Image, List[PIL.Image.Image]], resolution: Tuple[int, int] | |
| ): | |
| # First convert the images to PIL in case they are float tensors (only relevant for tests now). | |
| image = _convert_pt_to_pil(image) | |
| if isinstance(image, list): | |
| scale = min(image[0].size[0] / resolution[0], image[0].size[1] / resolution[1]) | |
| image = [u.resize((round(u.width // scale), round(u.height // scale)), resample=PIL.Image.BOX) for u in image] | |
| # center crop | |
| x1 = (image[0].width - resolution[0]) // 2 | |
| y1 = (image[0].height - resolution[1]) // 2 | |
| image = [u.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) for u in image] | |
| return image | |
| else: | |
| scale = min(image.size[0] / resolution[0], image.size[1] / resolution[1]) | |
| image = image.resize((round(image.width // scale), round(image.height // scale)), resample=PIL.Image.BOX) | |
| x1 = (image.width - resolution[0]) // 2 | |
| y1 = (image.height - resolution[1]) // 2 | |
| image = image.crop((x1, y1, x1 + resolution[0], y1 + resolution[1])) | |
| return image | |