InstantIR / app.py
JOY-Huang's picture
fix examples dir
9052993
raw
history blame
11.1 kB
import os
print(os.listdir('examples'))
import random
import torch
import spaces
import numpy as np
import gradio as gr
from PIL import Image
Image.open("examples/wukong.png")
from diffusers import DDPMScheduler
from schedulers.lcm_single_step_scheduler import LCMSingleStepScheduler
from module.ip_adapter.utils import load_adapter_to_pipe
from pipelines.sdxl_instantir import InstantIRPipeline
from huggingface_hub import hf_hub_download
def resize_img(input_image, max_side=1024, min_side=768, width=None, height=None,
pad_to_max_side=False, mode=Image.BILINEAR, base_pixel_number=64):
w, h = input_image.size
# Prepare output size
if width > 0 and height > 0:
out_w, out_h = width, height
elif width > 0:
out_w = width
out_h = round(h * width / w)
elif height > 0:
out_h = height
out_w = round(w * height / h)
else:
out_w, out_h = w, h
# Resize input to runtime size
w, h = out_w, out_h
if min(w, h) < min_side:
ratio = min_side / min(w, h)
w, h = round(ratio * w), round(ratio * h)
if max(w, h) > max_side:
ratio = max_side / max(w, h)
w, h = round(ratio * w), round(ratio * h)
# Resize to cope with UNet and VAE operations
w_resize_new = (w // base_pixel_number) * base_pixel_number
h_resize_new = (h // base_pixel_number) * base_pixel_number
input_image = input_image.resize([w_resize_new, h_resize_new], mode)
if pad_to_max_side:
res = np.ones([max_side, max_side, 3], dtype=np.uint8) * 255
offset_x = (max_side - w_resize_new) // 2
offset_y = (max_side - h_resize_new) // 2
res[offset_y:offset_y+h_resize_new, offset_x:offset_x+w_resize_new] = np.array(input_image)
input_image = Image.fromarray(res)
return input_image, (out_w, out_h)
if not os.path.exists("models/adapter.pt"):
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/adapter.pt", local_dir=".")
if not os.path.exists("models/aggregator.pt"):
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/aggregator.pt", local_dir=".")
if not os.path.exists("models/previewer_lora_weights.bin"):
hf_hub_download(repo_id="InstantX/InstantIR", filename="models/previewer_lora_weights.bin", local_dir=".")
device = "cuda" if torch.cuda.is_available() else "cpu"
sdxl_repo_id = "stabilityai/stable-diffusion-xl-base-1.0"
dinov2_repo_id = "facebook/dinov2-large"
lcm_repo_id = "latent-consistency/lcm-lora-sdxl"
torch_dtype = torch.float16 if str(device).__contains__("cuda") else torch.float32
# Load pretrained models.
print("Initializing pipeline...")
pipe = InstantIRPipeline.from_pretrained(
sdxl_repo_id,
torch_dtype=torch_dtype,
)
# Image prompt projector.
print("Loading LQ-Adapter...")
load_adapter_to_pipe(
pipe,
"models/adapter.pt",
dinov2_repo_id,
)
# Prepare previewer
lora_alpha = pipe.prepare_previewers("models")
print(f"use lora alpha {lora_alpha}")
lora_alpha = pipe.prepare_previewers(lcm_repo_id, use_lcm=True)
print(f"use lora alpha {lora_alpha}")
pipe.to(device=device, dtype=torch_dtype)
pipe.scheduler = DDPMScheduler.from_pretrained(sdxl_repo_id, subfolder="scheduler")
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
pipe.scheduler = DDPMScheduler.from_pretrained(
sdxl_repo_id,
subfolder="scheduler"
)
lcm_scheduler = LCMSingleStepScheduler.from_config(pipe.scheduler.config)
# Load weights.
print("Loading checkpoint...")
aggregator_state_dict = torch.load(
"models/aggregator.pt",
map_location="cpu"
)
pipe.aggregator.load_state_dict(aggregator_state_dict)
pipe.aggregator.to(device=device, dtype=torch_dtype)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1280
MIN_IMAGE_SIZE = 1024
PROMPT = "Photorealistic, highly detailed, hyper detailed photo - realistic maximum detail, 32k, \
ultra HD, extreme meticulous detailing, skin pore detailing, \
hyper sharpness, perfect without deformations, \
taken using a Canon EOS R camera, Cinematic, High Contrast, Color Grading. "
NEG_PROMPT = "blurry, out of focus, unclear, depth of field, over-smooth, \
sketch, oil painting, cartoon, CG Style, 3D render, unreal engine, \
dirty, messy, worst quality, low quality, frames, painting, illustration, drawing, art, \
watermark, signature, jpeg artifacts, deformed, lowres"
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
def unpack_pipe_out(preview_row, index):
return preview_row[index][0]
def dynamic_preview_slider(sampling_steps):
return gr.Slider(label="Restoration Previews", value=sampling_steps-1, minimum=0, maximum=sampling_steps-1, step=1)
def dynamic_guidance_slider(sampling_steps):
return gr.Slider(label="Start Free Rendering", value=sampling_steps, minimum=0, maximum=sampling_steps, step=1)
def show_final_preview(preview_row):
return preview_row[-1][0]
@spaces.GPU(duration=70)
def instantir_restore(
lq, prompt="", steps=30, cfg_scale=7.0, guidance_end=1.0,
creative_restoration=False, seed=3407, height=None, width=None, preview_start=0.0):
if creative_restoration:
if "lcm" not in pipe.unet.active_adapters():
pipe.unet.set_adapter('lcm')
else:
if "previewer" not in pipe.unet.active_adapters():
pipe.unet.set_adapter('previewer')
if isinstance(guidance_end, int):
guidance_end = guidance_end / steps
elif guidance_end > 1.0:
guidance_end = guidance_end / steps
if isinstance(preview_start, int):
preview_start = preview_start / steps
elif preview_start > 1.0:
preview_start = preview_start / steps
lq, out_size = resize_img(lq, width=width, height=height)
lq = [lq]
generator = torch.Generator(device=device).manual_seed(seed)
timesteps = [
i * (1000//steps) + pipe.scheduler.config.steps_offset for i in range(0, steps)
]
timesteps = timesteps[::-1]
prompt = PROMPT if len(prompt)==0 else prompt
neg_prompt = NEG_PROMPT
out = pipe(
prompt=[prompt]*len(lq),
image=lq,
num_inference_steps=steps,
generator=generator,
timesteps=timesteps,
negative_prompt=[neg_prompt]*len(lq),
guidance_scale=cfg_scale,
control_guidance_end=guidance_end,
preview_start=preview_start,
previewer_scheduler=lcm_scheduler,
return_dict=False,
save_preview_row=True,
)
out[0][0] = out[0][0].resize([out_size[0], out_size[1]], Image.BILINEAR)
for i, preview_tuple in enumerate(out[1]):
preview_tuple[0] = preview_tuple[0].resize([out_size[0], out_size[1]], Image.BILINEAR)
preview_tuple.append(f"preview_{i}")
return out[0][0], out[1]
css="""
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks() as demo:
gr.Markdown(
"""
# InstantIR: Blind Image Restoration with Instant Generative Reference.
### **Official 🤗 Gradio demo of [InstantIR](https://github.com/instantX-research/InstantIR).**
### **InstantIR can not only help you restore your broken image, but also capable of imaginative re-creation following your text prompts. See advance usage for more details!**
## Basic usage: revitalize your image
1. Upload an image you want to restore;
2. By default InstantIR will restore your image at original size, you can change output size by setting `Height` and `Width` according to your requirements;
3. Optionally, tune the `Steps` `CFG Scale` parameters. Typically higher steps lead to better results, but less than 50 is recommended for efficiency;
4. Click `InstantIR magic!`.
""")
with gr.Row():
with gr.Column():
lq_img = gr.Image(label="Low-quality image", type="pil")
with gr.Row():
restore_btn = gr.Button("InstantIR magic!")
clear_btn = gr.ClearButton()
with gr.Row():
steps = gr.Number(label="Steps", value=30, step=1)
cfg_scale = gr.Number(label="CFG Scale", value=7.0, step=0.1)
with gr.Row():
height = gr.Number(label="Height", step=1, maximum=MAX_IMAGE_SIZE)
width = gr.Number(label="Width", step=1, maximum=MAX_IMAGE_SIZE)
seed = gr.Number(label="Seed", value=42, step=1)
guidance_end = gr.Slider(label="Start Free Rendering", value=30, minimum=0, maximum=30, step=1)
preview_start = gr.Slider(label="Preview Start", value=0, minimum=0, maximum=30, step=1)
mode = gr.Checkbox(label="Creative Restoration", value=False)
prompt = gr.Textbox(label="Restoration prompts (Optional)", placeholder="")
gr.Examples(
examples = [
"./examples/wukong.png", "./examples/lady.png", "./examples/man.png", "./examples/dog.png", "./examples/panda.png", "./examples/sculpture.png", "./examples/cottage.png", "./examples/Naruto.png", "./examples/Konan.png"
],
inputs = [lq_img]
)
with gr.Column():
output = gr.Image(label="InstantIR restored", type="pil")
index = gr.Slider(label="Restoration Previews", value=29, minimum=0, maximum=29, step=1)
preview = gr.Image(label="Preview", type="pil")
pipe_out = gr.Gallery(visible=False)
clear_btn.add([lq_img, output, preview])
restore_btn.click(
instantir_restore, inputs=[
lq_img, prompt, steps, cfg_scale, guidance_end,
mode, seed, height, width, preview_start,
],
outputs=[output, pipe_out], api_name="InstantIR"
)
steps.change(dynamic_guidance_slider, inputs=steps, outputs=guidance_end)
output.change(dynamic_preview_slider, inputs=steps, outputs=index)
index.release(unpack_pipe_out, inputs=[pipe_out, index], outputs=preview)
output.change(show_final_preview, inputs=pipe_out, outputs=preview)
gr.Markdown(
"""
## Advance usage:
### Browse restoration variants:
1. After InstantIR processing, drag the `Restoration Previews` slider to explore other in-progress versions;
2. If you like one of them, set the `Start Free Rendering` slider to the same value to get a more refined result.
### Creative restoration:
1. Check the `Creative Restoration` checkbox;
2. Input your text prompts in the `Restoration prompts` textbox;
3. Set `Start Free Rendering` slider to a medium value (around half of the `steps`) to provide adequate room for InstantIR creation.
""")
gr.Markdown(
"""
## Citation
If InstantIR is helpful to your work, please cite our paper via:
```
@article{huang2024instantir,
title={InstantIR: Blind Image Restoration with Instant Generative Reference},
author={Huang, Jen-Yuan and Wang, Haofan and Wang, Qixun and Bai, Xu and Ai, Hao and Xing, Peng and Huang, Jen-Tse},
journal={arXiv preprint arXiv:2410.06551},
year={2024}
}
```
""")
demo.queue().launch()