Spaces:
Runtime error
Runtime error
Upload vqgan_detokenizer.py
Browse files
min_dalle/models/vqgan_detokenizer.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from torch import FloatTensor, LongTensor
|
4 |
+
from math import sqrt
|
5 |
+
|
6 |
+
|
7 |
+
class ResnetBlock(nn.Module):
|
8 |
+
def __init__(self, log2_count_in: int, log2_count_out: int):
|
9 |
+
super().__init__()
|
10 |
+
m, n = 2 ** log2_count_in, 2 ** log2_count_out
|
11 |
+
self.is_middle = m == n
|
12 |
+
self.norm1 = nn.GroupNorm(2 ** 5, m)
|
13 |
+
self.conv1 = nn.Conv2d(m, n, 3, padding=1)
|
14 |
+
self.norm2 = nn.GroupNorm(2 ** 5, n)
|
15 |
+
self.conv2 = nn.Conv2d(n, n, 3, padding=1)
|
16 |
+
if not self.is_middle:
|
17 |
+
self.nin_shortcut = nn.Conv2d(m, n, 1)
|
18 |
+
|
19 |
+
def forward(self, x: FloatTensor) -> FloatTensor:
|
20 |
+
h = x
|
21 |
+
h = self.norm1.forward(h)
|
22 |
+
h *= torch.sigmoid(h)
|
23 |
+
h = self.conv1.forward(h)
|
24 |
+
h = self.norm2.forward(h)
|
25 |
+
h *= torch.sigmoid(h)
|
26 |
+
h = self.conv2(h)
|
27 |
+
if not self.is_middle:
|
28 |
+
x = self.nin_shortcut.forward(x)
|
29 |
+
return x + h
|
30 |
+
|
31 |
+
|
32 |
+
class AttentionBlock(nn.Module):
|
33 |
+
def __init__(self):
|
34 |
+
super().__init__()
|
35 |
+
n = 2 ** 9
|
36 |
+
self.norm = nn.GroupNorm(2 ** 5, n)
|
37 |
+
self.q = nn.Conv2d(n, n, 1)
|
38 |
+
self.k = nn.Conv2d(n, n, 1)
|
39 |
+
self.v = nn.Conv2d(n, n, 1)
|
40 |
+
self.proj_out = nn.Conv2d(n, n, 1)
|
41 |
+
|
42 |
+
def forward(self, x: FloatTensor) -> FloatTensor:
|
43 |
+
n, m = 2 ** 9, x.shape[0]
|
44 |
+
h = x
|
45 |
+
h = self.norm(h)
|
46 |
+
k = self.k.forward(h)
|
47 |
+
v = self.v.forward(h)
|
48 |
+
q = self.q.forward(h)
|
49 |
+
k = k.reshape(m, n, -1)
|
50 |
+
v = v.reshape(m, n, -1)
|
51 |
+
q = q.reshape(m, n, -1)
|
52 |
+
q = q.permute(0, 2, 1)
|
53 |
+
w = torch.bmm(q, k)
|
54 |
+
w /= n ** 0.5
|
55 |
+
w = torch.softmax(w, dim=2)
|
56 |
+
w = w.permute(0, 2, 1)
|
57 |
+
h = torch.bmm(v, w)
|
58 |
+
token_count = int(sqrt(h.shape[-1]))
|
59 |
+
h = h.reshape(m, n, token_count, token_count)
|
60 |
+
h = self.proj_out.forward(h)
|
61 |
+
return x + h
|
62 |
+
|
63 |
+
|
64 |
+
class MiddleLayer(nn.Module):
|
65 |
+
def __init__(self):
|
66 |
+
super().__init__()
|
67 |
+
self.block_1 = ResnetBlock(9, 9)
|
68 |
+
self.attn_1 = AttentionBlock()
|
69 |
+
self.block_2 = ResnetBlock(9, 9)
|
70 |
+
|
71 |
+
def forward(self, h: FloatTensor) -> FloatTensor:
|
72 |
+
h = self.block_1.forward(h)
|
73 |
+
h = self.attn_1.forward(h)
|
74 |
+
h = self.block_2.forward(h)
|
75 |
+
return h
|
76 |
+
|
77 |
+
|
78 |
+
class Upsample(nn.Module):
|
79 |
+
def __init__(self, log2_count):
|
80 |
+
super().__init__()
|
81 |
+
n = 2 ** log2_count
|
82 |
+
self.upsample = torch.nn.UpsamplingNearest2d(scale_factor=2)
|
83 |
+
self.conv = nn.Conv2d(n, n, 3, padding=1)
|
84 |
+
|
85 |
+
def forward(self, x: FloatTensor) -> FloatTensor:
|
86 |
+
x = self.upsample.forward(x.to(torch.float32))
|
87 |
+
x = self.conv.forward(x)
|
88 |
+
return x
|
89 |
+
|
90 |
+
|
91 |
+
class UpsampleBlock(nn.Module):
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
log2_count_in: int,
|
95 |
+
log2_count_out: int,
|
96 |
+
has_attention: bool,
|
97 |
+
has_upsample: bool
|
98 |
+
):
|
99 |
+
super().__init__()
|
100 |
+
self.has_attention = has_attention
|
101 |
+
self.has_upsample = has_upsample
|
102 |
+
|
103 |
+
self.block = nn.ModuleList([
|
104 |
+
ResnetBlock(log2_count_in, log2_count_out),
|
105 |
+
ResnetBlock(log2_count_out, log2_count_out),
|
106 |
+
ResnetBlock(log2_count_out, log2_count_out)
|
107 |
+
])
|
108 |
+
|
109 |
+
if has_attention:
|
110 |
+
self.attn = nn.ModuleList([
|
111 |
+
AttentionBlock(),
|
112 |
+
AttentionBlock(),
|
113 |
+
AttentionBlock()
|
114 |
+
])
|
115 |
+
|
116 |
+
if has_upsample:
|
117 |
+
self.upsample = Upsample(log2_count_out)
|
118 |
+
|
119 |
+
|
120 |
+
def forward(self, h: FloatTensor) -> FloatTensor:
|
121 |
+
for j in range(3):
|
122 |
+
h = self.block[j].forward(h)
|
123 |
+
if self.has_attention:
|
124 |
+
h = self.attn[j].forward(h)
|
125 |
+
if self.has_upsample:
|
126 |
+
h = self.upsample.forward(h)
|
127 |
+
return h
|
128 |
+
|
129 |
+
|
130 |
+
class Decoder(nn.Module):
|
131 |
+
def __init__(self):
|
132 |
+
super().__init__()
|
133 |
+
|
134 |
+
self.conv_in = nn.Conv2d(2 ** 8, 2 ** 9, 3, padding=1)
|
135 |
+
self.mid = MiddleLayer()
|
136 |
+
|
137 |
+
self.up = nn.ModuleList([
|
138 |
+
UpsampleBlock(7, 7, False, False),
|
139 |
+
UpsampleBlock(8, 7, False, True),
|
140 |
+
UpsampleBlock(8, 8, False, True),
|
141 |
+
UpsampleBlock(9, 8, False, True),
|
142 |
+
UpsampleBlock(9, 9, True, True)
|
143 |
+
])
|
144 |
+
|
145 |
+
self.norm_out = nn.GroupNorm(2 ** 5, 2 ** 7)
|
146 |
+
self.conv_out = nn.Conv2d(2 ** 7, 3, 3, padding=1)
|
147 |
+
|
148 |
+
def forward(self, z: FloatTensor) -> FloatTensor:
|
149 |
+
z = self.conv_in.forward(z)
|
150 |
+
z = self.mid.forward(z)
|
151 |
+
|
152 |
+
for i in reversed(range(5)):
|
153 |
+
z = self.up[i].forward(z)
|
154 |
+
|
155 |
+
z = self.norm_out.forward(z)
|
156 |
+
z *= torch.sigmoid(z)
|
157 |
+
z = self.conv_out.forward(z)
|
158 |
+
return z
|
159 |
+
|
160 |
+
|
161 |
+
class VQGanDetokenizer(nn.Module):
|
162 |
+
def __init__(self):
|
163 |
+
super().__init__()
|
164 |
+
vocab_count, embed_count = 2 ** 14, 2 ** 8
|
165 |
+
self.vocab_count = vocab_count
|
166 |
+
self.embedding = nn.Embedding(vocab_count, embed_count)
|
167 |
+
self.post_quant_conv = nn.Conv2d(embed_count, embed_count, 1)
|
168 |
+
self.decoder = Decoder()
|
169 |
+
|
170 |
+
def forward(self, is_seamless: bool, z: LongTensor) -> FloatTensor:
|
171 |
+
z.clamp_(0, self.vocab_count - 1)
|
172 |
+
grid_size = int(sqrt(z.shape[0]))
|
173 |
+
token_count = grid_size * 2 ** 4
|
174 |
+
|
175 |
+
if is_seamless:
|
176 |
+
z = z.view([grid_size, grid_size, 2 ** 4, 2 ** 4])
|
177 |
+
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
178 |
+
z = z.flatten().unsqueeze(1)
|
179 |
+
z = self.embedding.forward(z)
|
180 |
+
z = z.view((1, token_count, token_count, 2 ** 8))
|
181 |
+
else:
|
182 |
+
z = self.embedding.forward(z)
|
183 |
+
z = z.view((z.shape[0], 2 ** 4, 2 ** 4, 2 ** 8))
|
184 |
+
|
185 |
+
z = z.permute(0, 3, 1, 2).contiguous()
|
186 |
+
z = self.post_quant_conv.forward(z)
|
187 |
+
z = self.decoder.forward(z)
|
188 |
+
z = z.permute(0, 2, 3, 1)
|
189 |
+
z = z.clip(0.0, 1.0) * 255
|
190 |
+
|
191 |
+
if is_seamless:
|
192 |
+
z = z[0]
|
193 |
+
else:
|
194 |
+
z = z.view([grid_size, grid_size, 2 ** 8, 2 ** 8, 3])
|
195 |
+
z = z.flatten(1, 2).transpose(1, 0).flatten(1, 2)
|
196 |
+
|
197 |
+
return z
|