adaface-neurips commited on
Commit
13d8b07
·
1 Parent(s): 81f8834

minor changes

Browse files
Files changed (2) hide show
  1. adaface/adaface_wrapper.py +22 -7
  2. app.py +7 -5
adaface/adaface_wrapper.py CHANGED
@@ -84,7 +84,7 @@ class AdaFaceWrapper(nn.Module):
84
  if self.use_ds_text_encoder:
85
  # The dreamshaper v7 finetuned text encoder follows the prompt slightly better than the original text encoder.
86
  # https://huggingface.co/Lykon/DreamShaper/tree/main/text_encoder
87
- text_encoder = CLIPTextModel.from_pretrained("models/ds_text_encoder", torch_dtype=torch.float16)
88
  else:
89
  text_encoder = None
90
 
@@ -253,10 +253,13 @@ class AdaFaceWrapper(nn.Module):
253
  self.update_text_encoder_subj_embs(adaface_subj_embs)
254
  return adaface_subj_embs
255
 
256
- def encode_prompt(self, prompt, negative_prompt=None, device="cuda", verbose=False):
257
  if negative_prompt is None:
258
  negative_prompt = self.negative_prompt
259
-
 
 
 
260
  prompt = self.update_prompt(prompt)
261
  if verbose:
262
  print(f"Prompt: {prompt}")
@@ -264,10 +267,22 @@ class AdaFaceWrapper(nn.Module):
264
  # For some unknown reason, the text_encoder is still on CPU after self.pipeline.to(self.device).
265
  # So we manually move it to GPU here.
266
  self.pipeline.text_encoder.to(device)
267
- # prompt_embeds_, negative_prompt_embeds_: [1, 77, 768]
268
- prompt_embeds_, negative_prompt_embeds_ = \
269
- self.pipeline.encode_prompt(prompt, device=device, num_images_per_prompt=1,
270
- do_classifier_free_guidance=True, negative_prompt=negative_prompt)
 
 
 
 
 
 
 
 
 
 
 
 
271
  return prompt_embeds_, negative_prompt_embeds_
272
 
273
  # ref_img_strength is used only in the img2img pipeline.
 
84
  if self.use_ds_text_encoder:
85
  # The dreamshaper v7 finetuned text encoder follows the prompt slightly better than the original text encoder.
86
  # https://huggingface.co/Lykon/DreamShaper/tree/main/text_encoder
87
+ text_encoder = CLIPTextModel.from_pretrained("models/diffusers/ds_text_encoder", torch_dtype=torch.float16)
88
  else:
89
  text_encoder = None
90
 
 
253
  self.update_text_encoder_subj_embs(adaface_subj_embs)
254
  return adaface_subj_embs
255
 
256
+ def encode_prompt(self, prompt, negative_prompt=None, device=None, verbose=False):
257
  if negative_prompt is None:
258
  negative_prompt = self.negative_prompt
259
+
260
+ if device is None:
261
+ device = self.device
262
+
263
  prompt = self.update_prompt(prompt)
264
  if verbose:
265
  print(f"Prompt: {prompt}")
 
267
  # For some unknown reason, the text_encoder is still on CPU after self.pipeline.to(self.device).
268
  # So we manually move it to GPU here.
269
  self.pipeline.text_encoder.to(device)
270
+ # Compatible with older versions of diffusers.
271
+ if not hasattr(self.pipeline, "encode_prompt"):
272
+ # prompt_embeds_, negative_prompt_embeds_: [77, 768] -> [1, 77, 768].
273
+ prompt_embeds_, negative_prompt_embeds_ = \
274
+ self.pipeline._encode_prompt(prompt, device=device, num_images_per_prompt=1,
275
+ do_classifier_free_guidance=True, negative_prompt=negative_prompt)
276
+ prompt_embeds_ = prompt_embeds_.unsqueeze(0)
277
+ negative_prompt_embeds_ = negative_prompt_embeds_.unsqueeze(0)
278
+ else:
279
+ # prompt_embeds_, negative_prompt_embeds_: [1, 77, 768]
280
+ prompt_embeds_, negative_prompt_embeds_ = \
281
+ self.pipeline.encode_prompt(prompt, device=device,
282
+ num_images_per_prompt=1,
283
+ do_classifier_free_guidance=True,
284
+ negative_prompt=negative_prompt)
285
+
286
  return prompt_embeds_, negative_prompt_embeds_
287
 
288
  # ref_img_strength is used only in the img2img pipeline.
app.py CHANGED
@@ -88,7 +88,8 @@ def gen_init_images(uploaded_image_paths, prompt, adaface_id_cfg_scale, out_imag
88
  # Generate two images each time for the user to select from.
89
  noise = torch.randn(out_image_count, 3, 512, 512)
90
  # samples: A list of PIL Image instances.
91
- samples = adaface(noise, prompt, out_image_count=out_image_count, verbose=True)
 
92
 
93
  face_paths = []
94
  for sample in samples:
@@ -130,10 +131,11 @@ def generate_image(image_container, uploaded_image_paths, init_img_file_paths, i
130
  # Reload the embedding manager
131
  adaface.load_subj_basis_generator(adaface_ckpt_path)
132
 
133
- adaface.generate_adaface_embeddings(image_folder=None, image_paths=uploaded_image_paths,
134
- out_id_embs_scale=adaface_id_cfg_scale, update_text_encoder=True)
135
- # adaface_prompt_embeds: [1, 77, 768].
136
- adaface_prompt_embeds, _ = adaface.encode_prompt(prompt)
 
137
 
138
  # init_img_file_paths is a list of image paths. If not chose, init_img_file_paths is None.
139
  if init_img_file_paths is not None:
 
88
  # Generate two images each time for the user to select from.
89
  noise = torch.randn(out_image_count, 3, 512, 512)
90
  # samples: A list of PIL Image instances.
91
+ with torch.no_grad():
92
+ samples = adaface(noise, prompt, out_image_count=out_image_count, verbose=True)
93
 
94
  face_paths = []
95
  for sample in samples:
 
131
  # Reload the embedding manager
132
  adaface.load_subj_basis_generator(adaface_ckpt_path)
133
 
134
+ with torch.no_grad():
135
+ adaface.generate_adaface_embeddings(image_folder=None, image_paths=uploaded_image_paths,
136
+ out_id_embs_scale=adaface_id_cfg_scale, update_text_encoder=True)
137
+ # adaface_prompt_embeds: [1, 77, 768].
138
+ adaface_prompt_embeds, _ = adaface.encode_prompt(prompt)
139
 
140
  # init_img_file_paths is a list of image paths. If not chose, init_img_file_paths is None.
141
  if init_img_file_paths is not None: