# A3C++ a modified version of Asynchronous Advantage actor critic algorithm | |
# ----------------------------------- | |
# | |
# A3C paper: https://arxiv.org/abs/1602.01783 | |
# | |
# The A3C implementation is available at: | |
# https://jaromiru.com/2017/02/16/lets-make-an-a3c-theory/ | |
# by: Jaromir Janisch, 2017 | |
# Two variations are implemented: A memory replay and a deterministic search following argmax(pi) instead of pi as a probability distribution | |
# Every action selection is made following the action with the highest probability pi | |
# Author: Taha Nakabi | |
# Args: 'train' for training the model anything else will skip the training and try to use already saved models | |
import gradio as gr | |
from gradio.components import * | |
import subprocess | |
def main(use_default, file): | |
subprocess.run(['python', './A3C_plusplus.py']) | |
base = './RESULT/' | |
img_path = [] | |
for i in range(1, 11): | |
img_path.append(base + 'Day' + str(i) + '.png') | |
# else: | |
# 根据上传的文件执行相应的逻辑 | |
# 请根据您的实际需求自行编写代码 | |
return [img for img in img_path] | |
# 创建一个复选框来表示是否选择默认文件 | |
default_checkbox = gr.inputs.Checkbox(label="使用默认文件", default=False) | |
inputs = [ | |
default_checkbox, | |
File(label="上传文件", optional=True) | |
] | |
outputs = [ | |
Image(label="DAY" + str(day + 1), type='filepath') for day in range(10) | |
] | |
iface = gr.Interface(fn=main, inputs=inputs, outputs=outputs) | |
iface.launch() | |