Spaces:
Runtime error
Runtime error
from PIL import Image | |
import gradio as gr | |
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler | |
import torch | |
torch.backends.cuda.matmul.allow_tf32 = True | |
controlnet = ControlNetModel.from_pretrained("JFoz/dog-cat-pose", torch_dtype=torch.float16, use_safetensors=True) | |
pipe = StableDiffusionControlNetPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", | |
controlnet=controlnet, | |
torch_dtype=torch.float16, | |
safety_checker=None, | |
) | |
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
pipe.enable_xformers_memory_efficient_attention() | |
pipe.enable_model_cpu_offload() | |
pipe.enable_attention_slicing() | |
def infer( | |
prompt, | |
negative_prompt, | |
conditioning_image, | |
num_inference_steps=30, | |
size=768, | |
guidance_scale=7.0, | |
seed=1234, | |
): | |
conditioning_image_raw = Image.fromarray(conditioning_image) | |
#conditioning_image = conditioning_image_raw.convert('L') | |
g_cpu = torch.Generator() | |
if seed == -1: | |
generator = g_cpu.manual_seed(g_cpu.seed()) | |
else: | |
generator = g_cpu.manual_seed(seed) | |
output_image = pipe( | |
prompt, | |
conditioning_image, | |
height=size, | |
width=size, | |
num_inference_steps=num_inference_steps, | |
generator=generator, | |
negative_prompt=negative_prompt, | |
guidance_scale=guidance_scale, | |
controlnet_conditioning_scale=1.0, | |
).images[0] | |
#del conditioning_image, conditioning_image_raw | |
#gc.collect() | |
return output_image | |
with gr.Blocks(theme=gr.themes.Default(font=[gr.themes.GoogleFont("Inconsolata"), "Arial", "sans-serif"])) as demo: | |
gr.Markdown( | |
""" | |
# Animal Pose Control Net | |
# This is a demo of Animal Pose Control Net, which is a model trained on runwayml/stable-diffusion-v1-5 with new type of conditioning. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
) | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
) | |
conditioning_image = gr.Image( | |
label="Conditioning Image", | |
) | |
with gr.Accordion('Advanced options', open=False): | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
10, 40, 20, | |
step=1, | |
label="Steps", | |
) | |
size = gr.Slider( | |
256, 768, 512, | |
step=128, | |
label="Size", | |
) | |
with gr.Row(): | |
guidance_scale = gr.Slider( | |
label='Guidance Scale', | |
minimum=0.1, | |
maximum=30.0, | |
value=7.0, | |
step=0.1 | |
) | |
seed = gr.Slider( | |
label='Seed', | |
value=-1, | |
minimum=-1, | |
maximum=2147483647, | |
step=1, | |
# randomize=True | |
) | |
submit_btn = gr.Button( | |
value="Submit", | |
variant="primary" | |
) | |
with gr.Column(min_width=300): | |
output = gr.Image( | |
label="Result", | |
) | |
submit_btn.click( | |
fn=infer, | |
inputs=[ | |
prompt, negative_prompt, conditioning_image, num_inference_steps, size, guidance_scale, seed | |
#prompt, size, seed | |
], | |
outputs=output | |
) | |
gr.Examples( | |
examples=[ | |
#["a tortoiseshell cat is sitting on a cushion"], | |
#["a yellow dog standing on a lawn"], | |
["a tortoiseshell cat is sitting on a cushion", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_0.png"], | |
["a yellow dog standing on a lawn", "https://huggingface.co/JFoz/dog-cat-pose/blob/main/images_1.png"], | |
], | |
inputs=[ | |
#prompt, negative_prompt, conditioning_image | |
prompt | |
], | |
outputs=output, | |
fn=infer, | |
cache_examples=True, | |
) | |
gr.Markdown( | |
""" | |
* [Dataset](https://huggingface.co/datasets/JFoz/dog-poses-controlnet-dataset) | |
* [Diffusers model](), [Web UI model](https://huggingface.co/JFoz/dog-pose) | |
* [Training Report](https://wandb.ai/john-fozard/dog-cat-pose/runs/kmwcvae5)) | |
""") | |
#gr.Interface(infer, inputs=["text"], outputs=[output], title=title, description=description, examples=examples).queue().launch() | |
demo.launch() |