ntt123 commited on
Commit
9964736
1 Parent(s): ce8146d

Create script.js

Browse files
Files changed (1) hide show
  1. script.js +214 -0
script.js ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ // colab link: [...]
2
+
3
+ function MnistRNN() {
4
+ var model = this;
5
+
6
+ this.weights_meta = {
7
+ '(MnistNet).dropout(Dropout).keygen(Generator)._key': [[1973249, 1973251], [2]],
8
+ '(MnistNet).lstm_core(LSTMCore).fc(Linear).b': [[266496, 268544], [2048]],
9
+ '(MnistNet).lstm_core(LSTMCore).fc(Linear).w': [[268544, 1841408], [768, 2048]],
10
+ '(MnistNet).output_head(Linear).b': [[1841408, 1841665], [257]],
11
+ '(MnistNet).output_head(Linear).w': [[1841665, 1973249], [512, 257]],
12
+ '(MnistNet).pos_embed(Embed).embeddings': [[0, 200704], [784, 256]],
13
+ '(MnistNet).value_embed(Embed).embeddings': [[200704, 266496], [257, 256]]
14
+ };
15
+
16
+ this.is_model_ready = false;
17
+
18
+ this.embed_lookup = function(index, weights) {
19
+ return tf.slice(weights, [index], [1]);
20
+ };
21
+
22
+ this.pos = 0;
23
+ this.state = null;
24
+ this.start_token = 256;
25
+ this.hidden_size = this.weights_meta['(MnistNet).lstm_core(LSTMCore).fc(Linear).b'][1][0] / 4;
26
+
27
+ this.initialize_state = function() {
28
+ this.pos = 0;
29
+ this.token = this.start_token;
30
+ var hidden = tf.zeros([1, this.hidden_size]);
31
+ var cell = tf.zeros([1, this.hidden_size]);
32
+ this.state = [hidden, cell];
33
+ };
34
+
35
+ this.lstm_core = function(inputs, state, weights) {
36
+ const [hidden, cell] = state;
37
+ const [w, b] = weights;
38
+ const i_and_h =tf.concat([inputs, hidden], 1);
39
+ const gated = tf.add(tf.matMul(i_and_h, w), b);
40
+ const [i, g, f, o] = tf.split(gated, 4, 1);
41
+ const f_ = tf.sigmoid(tf.add(f, 1.));
42
+ const i_ = tf.sigmoid(i);
43
+ const g_ = tf.tanh(g);
44
+ const c = tf.add(
45
+ tf.mul(i_, g_),
46
+ tf.mul(cell, f_)
47
+ );
48
+ const h = tf.mul(
49
+ tf.sigmoid(o),
50
+ tf.tanh(c)
51
+ );
52
+ return [h, c];
53
+ };
54
+
55
+ this.step = function() {
56
+ const [token, h, c] = tf.tidy( function() {
57
+ const lstm_b = model.MODEL_WEIGHTS['(MnistNet).lstm_core(LSTMCore).fc(Linear).b'];
58
+ const lstm_w = model.MODEL_WEIGHTS['(MnistNet).lstm_core(LSTMCore).fc(Linear).w'];
59
+ const output_b = model.MODEL_WEIGHTS['(MnistNet).output_head(Linear).b'];
60
+ const output_w = model.MODEL_WEIGHTS['(MnistNet).output_head(Linear).w'];
61
+ const pos_embed = model.MODEL_WEIGHTS['(MnistNet).pos_embed(Embed).embeddings'];
62
+ const value_embed = model.MODEL_WEIGHTS['(MnistNet).value_embed(Embed).embeddings'];
63
+ const v = model.embed_lookup(model.token, value_embed);
64
+ const p = model.embed_lookup(model.pos, pos_embed);
65
+ const x = tf.add(v, p);
66
+ const [h, c] = model.lstm_core(x, model.state, [lstm_w, lstm_b]);
67
+ tf.dispose(model.state[0]);
68
+ tf.dispose(model.state[1]);
69
+ const logits = tf.add(
70
+ tf.matMul(h, output_w),
71
+ output_b
72
+ );
73
+ const token = tf.multinomial(logits, 1).dataSync()[0];
74
+
75
+ return [token, h, c];
76
+ });
77
+
78
+ this.clean_memory();
79
+ this.token = token;
80
+ this.state = [h, c];
81
+ canvas.plot_xyc(this.pos, token);
82
+ this.pos = this.pos + 1;
83
+ };
84
+
85
+ this.MODEL_WEIGHTS = {};
86
+ this.clean_memory = function() {
87
+ tf.dispose(model.state[0]);
88
+ tf.dispose(model.state[1]);
89
+ };
90
+
91
+ this.loop = function() {
92
+ this.step();
93
+ if (this.pos >=28*28) {
94
+ setTimeout(function(){
95
+ model.clean_memory();
96
+ model.initialize_state();
97
+ canvas.plot_grid();
98
+ model.loop();
99
+ }, 3000);
100
+ } else {
101
+ canvas.plot_xyc(this.pos, 255);
102
+ setTimeout(function(){model.loop();}, 0);
103
+ }
104
+ };
105
+
106
+ this.load_model_weights = function() {
107
+ var req = new XMLHttpRequest();
108
+ req.open("GET", "weights.bin", true);
109
+ console.log('loading weights...');
110
+ req.responseType = "arraybuffer";
111
+ var this_ = this;
112
+ req.onload = function (event) {
113
+ var buff = req.response;
114
+ if (buff) {
115
+ var W = new Float32Array(buff);
116
+ for(var k in this_.weights_meta) {
117
+ info = this_.weights_meta[k];
118
+ offset = info[0];
119
+ shape = info[1];
120
+ this_.MODEL_WEIGHTS[k] = tf.tensor(W.subarray(offset[0], offset[1]), shape);
121
+ }
122
+ this_.is_model_ready = true;
123
+ } else {
124
+ alert('Error while loading weights...');
125
+ }
126
+ };
127
+ req.send(null);
128
+ };
129
+
130
+ this.load_when_ready = function() {
131
+ tf.ready().then( function() {
132
+ tf.enableProdMode();
133
+ console.log('tf is ready');
134
+ model.initialize_state()
135
+ model.load_model_weights();
136
+ console.log(model.hidden_size);
137
+ });
138
+ };
139
+ }
140
+
141
+
142
+ function MnistCanvas() {
143
+ var canvas = document.getElementById("mnist-canvas");
144
+ canvas.width = window.innerWidth;
145
+ canvas.height = window.innerHeight;
146
+ context=canvas.getContext('2d');
147
+ context.translate(canvas.width/2,canvas.height/2);
148
+ var scale = Math.floor(Math.min(canvas.width, canvas.height) / (28*2) ) * 28;
149
+ console.log(scale);
150
+ context.scale(scale, scale)
151
+ context.imageSmoothingEnabled = false;
152
+
153
+ this.clear = function() {
154
+ context.clearRect(-1, -1, 2., 2.);
155
+ context.fillStyle = "rgb(0, 0, 0)";
156
+ context.fillRect(-10, -10, 20, 20);
157
+ };
158
+
159
+ this.plot_grid = function() {
160
+ for (var i=0; i< 28*28; i++) this.plot_xyc(i, 0);
161
+ };
162
+
163
+ this.plot_xyc = function (pos, color) {
164
+ color = Math.max(20, color);
165
+ var step = 1. / 28;
166
+ var y = Math.floor(pos / 28 - 14) * step;
167
+ var x = (pos % 28 - 14) * step;
168
+ context.fillStyle = "rgb(0, " + color + ", 0)";
169
+ context.fillRect(x, y, step, step);
170
+ context.strokeStyle = "rgb(0, 0, 0)";
171
+ context.lineWidth = 0.008;
172
+ context.strokeRect(x, y, step, step);
173
+ };
174
+
175
+ this.loading_animation = function() {
176
+ var counter = 0;
177
+ var this_ = this;
178
+ this_.plot_grid();
179
+
180
+ var draw = function() {
181
+ if (model.is_model_ready) {
182
+ console.log('stopping animation.');
183
+ model.loop();
184
+ return;
185
+ }
186
+ if (counter >= 28*28) {
187
+ this_.plot_grid();
188
+ counter = 0;
189
+ }
190
+ this_.plot_xyc(counter, 255);
191
+ if (counter < 28*28-1) {
192
+ this_.plot_xyc(counter+1, 255);
193
+ }
194
+ counter = counter+1;
195
+ window.requestAnimationFrame(draw);
196
+ };
197
+ window.requestAnimationFrame(draw);
198
+ };
199
+ }
200
+
201
+
202
+ var model = null;
203
+ var canvas = null;
204
+
205
+ window.onload = function() {
206
+ setTimeout(function() {
207
+ model = new MnistRNN();
208
+ canvas = new MnistCanvas();
209
+ console.log("init...");
210
+ canvas.clear();
211
+ canvas.loading_animation();
212
+ model.load_when_ready();
213
+ }, 500);
214
+ };