Spaces:
Runtime error
Runtime error
import os | |
import gradio as gr | |
import mdtex2html | |
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from transformers.generation import GenerationConfig | |
from flash_attn import flash_attn_qkvpacked_func, flash_attn_func | |
# Initialize model and tokenizer | |
tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True) | |
model = AutoModelForCausalLM.from_pretrained("Qwen/Qwen-14B-Chat", device_map="auto", trust_remote_code=True, use_flash_attn=True).eval() | |
model.generation_config = GenerationConfig.from_pretrained("Qwen/Qwen-14B-Chat", trust_remote_code=True) | |
# Postprocess function | |
def postprocess(self, y): | |
if y is None: | |
return [] | |
for i, (message, response) in enumerate(y): | |
y[i] = ( | |
None if message is None else mdtex2html.convert(message), | |
None if response is None else mdtex2html.convert(response), | |
) | |
return y | |
gr.Chatbot.postprocess = postprocess | |
# Text parsing function | |
def _parse_text(text): | |
lines = text.split("\n") | |
lines = [line for line in lines if line != ""] | |
count = 0 | |
for i, line in enumerate(lines): | |
if "```" in line: | |
count += 1 | |
items = line.split("`") | |
if count % 2 == 1: | |
lines[i] = f'<pre><code class="language-{items[-1]}">' | |
else: | |
lines[i] = f"<br></code></pre>" | |
else: | |
if i > 0: | |
if count % 2 == 1: | |
line = line.replace("`", r"\`") | |
line = line.replace("<", "<") | |
line = line.replace(">", ">") | |
line = line.replace(" ", " ") | |
line = line.replace("*", "*") | |
line = line.replace("_", "_") | |
line = line.replace("-", "-") | |
line = line.replace(".", ".") | |
line = line.replace("!", "!") | |
line = line.replace("(", "(") | |
line = line.replace(")", ")") | |
line = line.replace("$", "$") | |
lines[i] = "<br>" + line | |
text = "".join(lines) | |
return text | |
# Demo launching function | |
def _launch_demo(args, model, tokenizer, config): | |
def predict(_query, _chatbot, _task_history): | |
print(f"User: {_parse_text(_query)}") | |
_chatbot.append((_parse_text(_query), "")) | |
full_response = "" | |
for response in model.chat_stream(tokenizer, _query, history=_task_history, generation_config=config): | |
_chatbot[-1] = (_parse_text(_query), _parse_text(response)) | |
yield _chatbot | |
full_response = _parse_text(response) | |
print(f"History: {_task_history}") | |
_task_history.append((_query, full_response)) | |
print(f"Qwen-Chat: {_parse_text(full_response)}") | |
def regenerate(_chatbot, _task_history): | |
if not _task_history: | |
yield _chatbot | |
return | |
item = _task_history.pop(-1) | |
_chatbot.pop(-1) | |
yield from predict(item[0], _chatbot, _task_history) | |
def reset_user_input(): | |
return gr.update(value="") | |
def reset_state(_chatbot, _task_history): | |
_task_history.clear() | |
_chatbot.clear() | |
import gc | |
gc.collect() | |
torch.cuda.empty_cache() | |
return _chatbot | |
with gr.Blocks() as demo: | |
gr.Markdown(""" | |
## Qwen-14B-Chat: A Large Language Model by Alibaba Cloud | |
**Space created by [@artificialguybr](https://twitter.com/artificialguybr) based on QWEN Code. Thanks HF for GPU!** | |
**Qwen is currently SOTA in the benchmarks for 14B models.** | |
### Performance Metrics: | |
- **MMLU Accuracy**: | |
- 0-shot: 64.6 | |
- 5-shot: 66.5 | |
- **HumanEval Pass@1**: 43.9 | |
- **GSM8K Accuracy**: | |
- 0-shot: 60.1 | |
- 8-shot: 59.3 | |
""") | |
chatbot = gr.Chatbot(label='Qwen-Chat', elem_classes="control-height", queue=True) | |
query = gr.Textbox(lines=2, label='Input') | |
task_history = gr.State([]) | |
with gr.Row(): | |
empty_btn = gr.Button("🧹 Clear History") | |
submit_btn = gr.Button("🚀 Submit") | |
regen_btn = gr.Button("🤔️ Regenerate") | |
submit_btn.click(predict, [query, chatbot, task_history], [chatbot], show_progress=True, queue=True) # Enable queue | |
submit_btn.click(reset_user_input, [], [query]) | |
empty_btn.click(reset_state, [chatbot, task_history], outputs=[chatbot], show_progress=True) | |
regen_btn.click(regenerate, [chatbot, task_history], [chatbot], show_progress=True, queue=True) # Enable queue | |
demo.queue(max_size=20) | |
demo.launch(share=True) | |
# Main execution | |
if __name__ == "__main__": | |
_launch_demo(None, model, tokenizer, model.generation_config) | |