chat-ui / src /lib /server /websearch /sentenceSimilarity.ts
Mishig
Make embedding model settings more future-proof (#454)
3acc11d unverified
import type { Tensor } from "@xenova/transformers";
import { pipeline, dot } from "@xenova/transformers";
// see here: https://github.com/nmslib/hnswlib/blob/359b2ba87358224963986f709e593d799064ace6/README.md?plain=1#L34
function innerProduct(tensor1: Tensor, tensor2: Tensor) {
return 1.0 - dot(tensor1.data, tensor2.data);
}
const modelId = "Xenova/gte-small";
const extractor = await pipeline("feature-extraction", modelId);
// see https://huggingface.co/thenlper/gte-small/blob/d8e2604cadbeeda029847d19759d219e0ce2e6d8/README.md?code=true#L2625
export const MAX_SEQ_LEN = 512 as const;
export async function findSimilarSentences(
query: string,
sentences: string[],
{ topK = 5 }: { topK: number }
) {
const input = [query, ...sentences];
const output: Tensor = await extractor(input, { pooling: "mean", normalize: true });
const queryTensor: Tensor = output[0];
const sentencesTensor: Tensor = output.slice([1, input.length - 1]);
const distancesFromQuery: { distance: number; index: number }[] = [...sentencesTensor].map(
(sentenceTensor: Tensor, index: number) => {
return {
distance: innerProduct(queryTensor, sentenceTensor),
index: index,
};
}
);
distancesFromQuery.sort((a, b) => {
return a.distance - b.distance;
});
// Return the indexes of the closest topK sentences
return distancesFromQuery.slice(0, topK).map((item) => item.index);
}