Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import tensorflow
|
3 |
+
from tensorflow.keras.models import load_model
|
4 |
+
import numpy as np
|
5 |
+
from PIL import Image
|
6 |
+
import pandas as pd
|
7 |
+
import os
|
8 |
+
|
9 |
+
# Load the saved TensorFlow model
|
10 |
+
model = load_model('traffic-sign-detection-model3.h5')
|
11 |
+
|
12 |
+
|
13 |
+
inputBasePath = 'D:\\traffic_Data\\'
|
14 |
+
path = 'D:\\traffic_Data\\DATA'
|
15 |
+
testingFolder = 'D:\\traffic_Data\\TEST'
|
16 |
+
classes = pd.read_csv(os.path.join(inputBasePath,'labels.csv'))
|
17 |
+
|
18 |
+
|
19 |
+
# Function to preprocess the image
|
20 |
+
def preprocess_image(image):
|
21 |
+
# Preprocess the image as required for your model
|
22 |
+
# (e.g., resize, normalize pixel values)
|
23 |
+
resized_image = image.resize((100,100))
|
24 |
+
preprocessed_image = np.array(resized_image) / 255.0 # Normalize pixel values
|
25 |
+
return preprocessed_image
|
26 |
+
|
27 |
+
# Function to make predictions
|
28 |
+
def predict(image):
|
29 |
+
preprocessed_image = preprocess_image(image)
|
30 |
+
prediction = model.predict(np.expand_dims(preprocessed_image, axis=0))
|
31 |
+
return prediction
|
32 |
+
|
33 |
+
# Streamlit app
|
34 |
+
def main():
|
35 |
+
st.title('Traffic Sign Detection')
|
36 |
+
|
37 |
+
uploaded_image = st.file_uploader("Upload Image", type=['jpg', 'png', 'jpeg'])
|
38 |
+
|
39 |
+
if uploaded_image is not None:
|
40 |
+
# Display the uploaded image
|
41 |
+
image = Image.open(uploaded_image)
|
42 |
+
st.image(image, caption='Uploaded Image', use_column_width=True)
|
43 |
+
|
44 |
+
# Predict button
|
45 |
+
if st.button('Predict'):
|
46 |
+
# Make prediction
|
47 |
+
prediction = predict(image)
|
48 |
+
predicted_class = np.argmax(prediction, axis=1)
|
49 |
+
#st.write(predicted_class)
|
50 |
+
class_mapping = dict(zip(classes['ClassId'], classes['Name']))
|
51 |
+
predicted_label = class_mapping.get(predicted_class[0])
|
52 |
+
# st.write(predicted_label)
|
53 |
+
# st.write(predicted_class)
|
54 |
+
|
55 |
+
# Display prediction result
|
56 |
+
|
57 |
+
st.write('Prediction:', predicted_label)
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
main()
|