RadiantScriptor / app.py
J4Lee's picture
Update app.py
03c2a65
raw
history blame
3.15 kB
#pip install transformers
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, HfArgumentParser,TrainingArguments,pipeline, logging, TextStreamer, MistralForCausalLM
from peft import LoraConfig, PeftModel, prepare_model_for_kbit_training, get_peft_model,AutoPeftModelForCausalLM
import os,torch, platform, warnings
from datasets import load_dataset
from trl import SFTTrainer
from huggingface_hub import notebook_login
import fire
import streamlit as st
#git clone https://huggingface.co/spaces/J4Lee/RadiantScriptor
st.set_page_config(page_title= "Reports generation from Radiological Image ")
@st.cache(allow_output_mutation=True)
def get_model():
#device = "cuda" # the device to load the model onto
model = AutoModelForCausalLM.from_pretrained("MariamAde/Mistral_finetuned_base2")
tokenizer = AutoTokenizer.from_pretrained("MariamAde/Mistral_finetuned_base2")
return tokenizer, model
tokenizer, model = get_model()
def generate_report(labels): #,model,tokenizer):
# Tokenize the input labels
inputs = tokenizer(labels, return_tensors="pt") #.to(device)
#model.to(device)
# Generate output using the model
output = model.generate(**inputs)
# Decode the output sentences
sentences = tokenizer.decode(output[0], skip_special_tokens=True)
return sentences
# Streamlit interface
st.title("Radiology Report Generator")
# User input for finding labels
labels = st.text_input("Enter Finding Labels:")
if st.button("Generate Report"):
# Generate the radiology report
report = generate_report(labels) #,model,tokenizer)
# Display the report
st.text_area("Generated Report:", value=report, height=300)
# option 1) Mistral Usage tip
# @st.cache(allow_output_mutation=True)
# def get_model():
# #device = "cuda" # the device to load the model onto
# model = AutoModelForCausalLM.from_pretrained("MariamAde/Mistral_finetuned_v2")
# tokenizer = AutoTokenizer.from_pretrained("MariamAde/Mistral_finetuned_v2")
# return tokenizer, model
# option 2)
# @st.cache(allow_output_mutation=True)
# def get_model():
# tokenizer = LlamaTokenizer.from_pretrained("J4Lee/Medalpaca_finetuned_test")
# model = MistralForCausalLM.from_pretrained("J4Lee/Medalpaca_finetuned_test")
# return tokenizer, model
# option 3)
# @st.cache(allow_output_mutation=True)
# def get_model():
# base_model, new_model = "mistralai/Mistral-7B-v0.1" , "inferenceanalytics/radmistral_7b"
# base_model_reload = AutoModelForCausalLM.from_pretrained(
# base_model, low_cpu_mem_usage=True,
# return_dict=True,torch_dtype=torch.bfloat16,
# device_map= 'auto')
# model = PeftModel.from_pretrained(base_model_reload, new_model)
# model = merged_model.merge_and_unload()
# # Reload tokenizer
# tokenizer = AutoTokenizer.from_pretrained(base_model, trust_remote_code=True)
# tokenizer.pad_token = tokenizer.eos_token
# tokenizer.padding_side = "right"
# return tokenizer, model
# DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# DEVICE