Spaces:
Runtime error
Runtime error
# Ref: https://huggingface.co/spaces/multimodalart/cosxl | |
import gradio as gr | |
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler | |
import spaces | |
import torch | |
import os | |
from compel import Compel, ReturnedEmbeddingsType | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
model_id = "aipicasso/emi-2" | |
token=os.environ["TOKEN"] | |
scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id,subfolder="scheduler",token=token) | |
pipe_normal = StableDiffusionXLPipeline.from_pretrained(model_id, scheduler=scheduler, torch_dtype=torch.bfloat16,token=token) | |
negative_ti_file = hf_hub_download(repo_id="Aikimi/unaestheticXL_Negative_TI", filename="unaestheticXLv31.safetensors") | |
state_dict = load_file(negative_ti_file) | |
pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2) | |
pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXLv31", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer) | |
state_dict = load_file("unaestheticXL_Alb2.safetensors") | |
pipe_normal.load_textual_inversion(state_dict["clip_g"], token="unaestheticXL_Alb2", text_encoder=pipe_normal.text_encoder_2, tokenizer=pipe_normal.tokenizer_2) | |
pipe_normal.load_textual_inversion(state_dict["clip_l"], token="unaestheticXL_Alb2", text_encoder=pipe_normal.text_encoder, tokenizer=pipe_normal.tokenizer) | |
pipe_normal.load_lora_weights("fix_hands.pt") | |
pipe_normal.to("cuda") | |
pipe_normal.enable_freeu(s1=1.2, s2=0.7, b1=1.1, b2=1.3) | |
compel = Compel(tokenizer=[pipe_normal.tokenizer, pipe_normal.tokenizer_2] , | |
text_encoder=[pipe_normal.text_encoder, pipe_normal.text_encoder_2], | |
returned_embeddings_type=ReturnedEmbeddingsType.PENULTIMATE_HIDDEN_STATES_NON_NORMALIZED, | |
requires_pooled=[False, True]) | |
def run_normal(prompt, negative_prompt="", guidance_scale=7.5, progress=gr.Progress(track_tqdm=True)): | |
# ユーザーの著作権侵害を防ぐフィルター | |
words=["pokemon", "pikachu", "picachu", "mario", "sonic", "genshin"] | |
for word in words: | |
prompt=prompt.replace(word,"") | |
if(prompt==""): | |
conditioning, pooled = compel("1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom") | |
else: | |
conditioning, pooled = compel(prompt) | |
negative_conditioning, negatice_pooled = compel("(unaestheticXLv31)+++, (unaestheticXL_Alb2)++++, bad hands, bad anatomy, low quality, 3d, photo, realism, text, sign, "+negative_prompt) | |
result = pipe_normal( | |
prompt_embeds=conditioning, | |
pooled_prompt_embeds=pooled, | |
negative_prompt_embeds=negative_conditioning, | |
negative_pooled_prompt_embeds=negatice_pooled, | |
num_inference_steps = 25, | |
guidance_scale = guidance_scale, | |
width = 768, | |
height = 1344) | |
return result.images[0] | |
css = ''' | |
.gradio-container{ | |
max-width: 768px !important; | |
margin: 0 auto; | |
} | |
''' | |
normal_examples = [ | |
"1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom", | |
"1girl, (full body)++, brown bob short hair, brown eyes, school uniform, cherry blossom", | |
"no humans, manga, black and white, monochrome, Mt. fuji, 4k, highly detailed", | |
"no humans, manga, black and white, monochrome, Shibuya street, 4k, highly detailed", | |
"1boy, (upper body)++, silver very short hair, red eyes, looking at viewer, white background", | |
"1boy, (full body)++, silver very short hair, red eyes, looking at viewer, white background", | |
] | |
with gr.Blocks(css=css) as demo: | |
gr.Markdown('''# Emi 2 | |
Official demo for [Emi 2](https://huggingface.co/aipicasso/emi-2). Click the generate button!<br> | |
本モデルの生成物は各種法令に従って取り扱って下さい。 | |
''') | |
with gr.Group(): | |
with gr.Row(): | |
prompt_normal = gr.Textbox(show_label=False, scale=4, placeholder="Your prompt, e.g.: 1girl, (upper body)++, brown bob short hair, brown eyes, looking at viewer, cherry blossom") | |
button_normal = gr.Button("Generate", min_width=120) | |
output_normal = gr.Image(label="Your result image", interactive=False) | |
with gr.Accordion("Advanced Settings", open=False): | |
negative_prompt_normal = gr.Textbox(label="Negative Prompt") | |
guidance_scale_normal = gr.Number(label="Guidance Scale", value=7.5) | |
gr.Examples(examples=normal_examples, fn=run_normal, inputs=[prompt_normal], outputs=[output_normal], cache_examples=True) | |
gr.on( | |
triggers=[ | |
button_normal.click, | |
prompt_normal.submit | |
], | |
fn=run_normal, | |
inputs=[prompt_normal, negative_prompt_normal, guidance_scale_normal], | |
outputs=[output_normal], | |
) | |
if __name__ == "__main__": | |
demo.launch(share=True) |