Spaces:
Runtime error
Runtime error
import modules.core as core | |
import os | |
import gc | |
import torch | |
import numpy as np | |
import modules.path | |
from comfy.model_base import SDXL, SDXLRefiner | |
from comfy.model_management import soft_empty_cache | |
from PIL import Image, ImageOps | |
xl_base: core.StableDiffusionModel = None | |
xl_base_hash = '' | |
xl_refiner: core.StableDiffusionModel = None | |
xl_refiner_hash = '' | |
xl_base_patched: core.StableDiffusionModel = None | |
xl_base_patched_hash = '' | |
def refresh_base_model(name): | |
global xl_base, xl_base_hash, xl_base_patched, xl_base_patched_hash | |
if xl_base_hash == str(name): | |
return | |
filename = os.path.join(modules.path.modelfile_path, name) | |
if xl_base is not None: | |
xl_base.to_meta() | |
xl_base = None | |
xl_base = core.load_model(filename) | |
if not isinstance(xl_base.unet.model, SDXL): | |
print('Model not supported. Fooocus only support SDXL model as the base model.') | |
xl_base = None | |
xl_base_hash = '' | |
refresh_base_model(modules.path.default_base_model_name) | |
xl_base_hash = name | |
xl_base_patched = xl_base | |
xl_base_patched_hash = '' | |
return | |
xl_base_hash = name | |
xl_base_patched = xl_base | |
xl_base_patched_hash = '' | |
print(f'Base model loaded: {xl_base_hash}') | |
return | |
def refresh_refiner_model(name): | |
global xl_refiner, xl_refiner_hash | |
if xl_refiner_hash == str(name): | |
return | |
if name == 'None': | |
xl_refiner = None | |
xl_refiner_hash = '' | |
print(f'Refiner unloaded.') | |
return | |
filename = os.path.join(modules.path.modelfile_path, name) | |
if xl_refiner is not None: | |
xl_refiner.to_meta() | |
xl_refiner = None | |
xl_refiner = core.load_model(filename) | |
if not isinstance(xl_refiner.unet.model, SDXLRefiner): | |
print('Model not supported. Fooocus only support SDXL refiner as the refiner.') | |
xl_refiner = None | |
xl_refiner_hash = '' | |
print(f'Refiner unloaded.') | |
return | |
xl_refiner_hash = name | |
print(f'Refiner model loaded: {xl_refiner_hash}') | |
xl_refiner.vae.first_stage_model.to('meta') | |
xl_refiner.vae = None | |
return | |
def refresh_loras(loras): | |
global xl_base, xl_base_patched, xl_base_patched_hash | |
if xl_base_patched_hash == str(loras): | |
return | |
model = xl_base | |
for name, weight in loras: | |
if name == 'None': | |
continue | |
filename = os.path.join(modules.path.lorafile_path, name) | |
model = core.load_lora(model, filename, strength_model=weight, strength_clip=weight) | |
xl_base_patched = model | |
xl_base_patched_hash = str(loras) | |
print(f'LoRAs loaded: {xl_base_patched_hash}') | |
return | |
refresh_base_model(modules.path.default_base_model_name) | |
refresh_refiner_model(modules.path.default_refiner_model_name) | |
refresh_loras([(modules.path.default_lora_name, 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5), ('None', 0.5)]) | |
positive_conditions_cache = None | |
negative_conditions_cache = None | |
positive_conditions_refiner_cache = None | |
negative_conditions_refiner_cache = None | |
def clean_prompt_cond_caches(): | |
global positive_conditions_cache, negative_conditions_cache, \ | |
positive_conditions_refiner_cache, negative_conditions_refiner_cache | |
positive_conditions_cache = None | |
negative_conditions_cache = None | |
positive_conditions_refiner_cache = None | |
negative_conditions_refiner_cache = None | |
return | |
def process(positive_prompt, negative_prompt, steps, switch, width, height, image_seed, sampler_name, scheduler, cfg, base_clip_skip, refiner_clip_skip, input_image_path, start_step, denoise, callback): | |
global positive_conditions_cache, negative_conditions_cache, \ | |
positive_conditions_refiner_cache, negative_conditions_refiner_cache | |
xl_base_patched.clip.clip_layer(base_clip_skip) | |
positive_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=positive_prompt) if positive_conditions_cache is None else positive_conditions_cache | |
negative_conditions = core.encode_prompt_condition(clip=xl_base_patched.clip, prompt=negative_prompt) if negative_conditions_cache is None else negative_conditions_cache | |
positive_conditions_cache = positive_conditions | |
negative_conditions_cache = negative_conditions | |
if input_image_path == None: | |
latent = core.generate_empty_latent(width=width, height=height, batch_size=1) | |
force_full_denoise = True | |
denoise = None | |
else: | |
with open(input_image_path, 'rb') as image_file: | |
pil_image = Image.open(image_file) | |
image = ImageOps.exif_transpose(pil_image) | |
image_file.close() | |
image = image.convert("RGB") | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = torch.from_numpy(image)[None,] | |
input_image = core.upscale(image) | |
latent = core.encode_vae(vae=xl_base_patched.vae, pixels=input_image) | |
force_full_denoise = False | |
if xl_refiner is not None: | |
xl_refiner.clip.clip_layer(refiner_clip_skip) | |
positive_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=positive_prompt) if positive_conditions_refiner_cache is None else positive_conditions_refiner_cache | |
negative_conditions_refiner = core.encode_prompt_condition(clip=xl_refiner.clip, prompt=negative_prompt) if negative_conditions_refiner_cache is None else negative_conditions_refiner_cache | |
positive_conditions_refiner_cache = positive_conditions_refiner | |
negative_conditions_refiner_cache = negative_conditions_refiner | |
sampled_latent = core.ksampler_with_refiner( | |
model=xl_base_patched.unet, | |
positive=positive_conditions, | |
negative=negative_conditions, | |
refiner=xl_refiner.unet, | |
refiner_positive=positive_conditions_refiner, | |
refiner_negative=negative_conditions_refiner, | |
refiner_switch_step=switch, | |
latent=latent, | |
steps=steps, start_step=start_step, last_step=steps, | |
disable_noise=False, force_full_denoise=force_full_denoise, denoise=denoise, | |
seed=image_seed, | |
sampler_name=sampler_name, | |
scheduler=scheduler, | |
cfg=cfg, | |
callback_function=callback | |
) | |
else: | |
sampled_latent = core.ksampler( | |
model=xl_base_patched.unet, | |
positive=positive_conditions, | |
negative=negative_conditions, | |
latent=latent, | |
steps=steps, start_step=start_step, last_step=steps, | |
disable_noise=False, force_full_denoise=force_full_denoise, denoise=denoise, | |
seed=image_seed, | |
sampler_name=sampler_name, | |
scheduler=scheduler, | |
cfg=cfg, | |
callback_function=callback | |
) | |
decoded_latent = core.decode_vae(vae=xl_base_patched.vae, latent_image=sampled_latent) | |
images = core.image_to_numpy(decoded_latent) | |
gc.collect() | |
soft_empty_cache() | |
return images | |