Iury's picture
Update app.py
ee7b98b
raw
history blame contribute delete
988 Bytes
import requests
import tensorflow as tf
import numpy as np
import cv2
import gradio as gr
from tensorflow.keras.models import load_model
response = requests.get("https://raw.githubusercontent.com/IuryChagas25/Chest_Cancer_Detection/main/Labels.txt")
labels = response.text.split("\n")
model = load_model("model2.h5") # load the model
def classify_image(image):
new_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
new_image = new_image / 255.0
resized_image = cv2.resize(new_image,(250,250))
prediction = model.predict(np.array([resized_image])).flatten()
return {labels[i]: float(prediction[i]) for i in range(4)}
image = gr.inputs.Image(shape=(250, 250))
label = gr.outputs.Label(num_top_classes=4)
demo = gr.Interface(
fn=classify_image, inputs=image, outputs=label, examples=[["000110.png"], ["000111 (2).png"], ["6 - Copy.png"]], theme="huggingface", interpretation="shap", num_shap = 5)
if __name__ == "__main__":
demo.launch(share='True')