IsshikiHugh's picture
feat: CPU demo
5ac1897
from lib.kits.basic import *
import cv2
import traceback
from tqdm import tqdm
from lib.body_models.common import make_SKEL
from lib.body_models.abstract_skeletons import Skeleton_OpenPose25
from lib.utils.vis import render_mesh_overlay_img
from lib.utils.data import to_tensor
from lib.utils.media import draw_kp2d_on_img, annotate_img, splice_img
from lib.utils.camera import perspective_projection
from .utils import (
compute_rel_change,
gmof,
)
from .closure import build_closure
class SKELify():
def __init__(self, cfg, tb_logger=None, device='cuda:0', name='SKELify'):
self.cfg = cfg
self.name = name
self.eq_thre = cfg.early_quit_thresholds
self.tb_logger = tb_logger
self.device = device
# self.skel_model = make_SKEL(device=device)
self.skel_model = instantiate(cfg.skel_model).to(device)
# Shortcuts.
self.n_samples = cfg.logger.samples_per_record
# Dirty implementation for visualization.
self.render_frames = []
def __call__(
self,
gt_kp2d : Union[torch.Tensor, np.ndarray],
init_poses : Union[torch.Tensor, np.ndarray],
init_betas : Union[torch.Tensor, np.ndarray],
init_cam_t : Union[torch.Tensor, np.ndarray],
img_patch : Optional[np.ndarray] = None,
**kwargs
):
'''
Use optimization to fit the SKEL parameters to the 2D keypoints.
### Args:
- gt_kp2d: torch.Tensor or np.ndarray, (B, J, 3)
- The last three dim means [x, y, conf].
- The 2D keypoints to fit, they are defined in [-0.5, 0.5], zero-centered space.
- init_poses: torch.Tensor or np.ndarray, (B, 46)
- init_betas: torch.Tensor or np.ndarray, (B, 10)
- init_cam_t: torch.Tensor or np.ndarray, (B, 3)
- img_patch: np.ndarray or None, (B, H, W, 3)
- The image patch for visualization. H, W are defined in normalized bounding box space.
- If it is None, the visualization will simply use a black background.
### Returns:
- dict, containing the optimized parameters.
- poses: torch.Tensor, (B, 46)
- betas: torch.Tensor, (B, 10)
- cam_t: torch.Tensor, (B, 3)
'''
with PM.time_monitor('input preparation'):
gt_kp2d = to_tensor(gt_kp2d, device=self.device).detach().float().clone() # (B, J, 3)
init_poses = to_tensor(init_poses, device=self.device).detach().float().clone() # (B, 46)
init_betas = to_tensor(init_betas, device=self.device).detach().float().clone() # (B, 10)
init_cam_t = to_tensor(init_cam_t, device=self.device).detach().float().clone() # (B, 3)
inputs = {
'poses_orient' : init_poses[:, :3], # (B, 3)
'poses_body' : init_poses[:, 3:], # (B, 43)
'betas' : init_betas, # (B, 10)
'cam_t' : init_cam_t, # (B, 3)
}
focal_length = float(self.cfg.focal_length / self.cfg.img_patch_size) # float
# ⛩️ Optimization phases, controlled by config file.
with PM.time_monitor('optim') as tm:
prev_steps = 0 # accumulate the steps are *supposed* to be done in the previous phases
n_phases = len(self.cfg.phases)
for phase_id, phase_name in enumerate(self.cfg.phases):
phase_cfg = self.cfg.phases[phase_name]
# 📦 Data preparation.
optim_params = []
for k in inputs.keys():
if k in phase_cfg.params_keys:
inputs[k].requires_grad = True
optim_params.append(inputs[k]) # (B, D)
else:
inputs[k].requires_grad = False
log_data = {}
tm.tick(f'Data preparation')
# ⚙️ Optimization preparation.
optimizer = instantiate(phase_cfg.optimizer, optim_params, _recursive_=True)
closure = self._build_closure(
cfg=phase_cfg, optimizer=optimizer, # basic
inputs=inputs, focal_length=focal_length, gt_kp2d=gt_kp2d, # data reference
log_data=log_data, # monitoring
)
tm.tick(f'Optimizer * closure prepared.')
# 🚀 Optimization loop.
with tqdm(range(phase_cfg.max_loop)) as bar:
prev_loss = None
bar.set_description(f'[{phase_name}] Loss: ???')
for i in bar:
# 1. Main part of the optimization loop.
log_data.clear()
curr_loss = optimizer.step(closure)
# 2. Log.
if self.tb_logger is not None:
log_data.update({
'img_patch' : img_patch[:self.n_samples] if img_patch is not None else None,
'gt_kp2d' : gt_kp2d[:self.n_samples].detach().clone(),
})
self._tb_log(prev_steps + i, phase_name, log_data)
# 3. The end of one optimization loop.
bar.set_description(f'[{phase_id+1}/{n_phases}] @ {phase_name} - Loss: {curr_loss:.4f}')
if self._can_early_quit(optim_params, prev_loss, curr_loss):
break
prev_loss = curr_loss
prev_steps += phase_cfg.max_loop
tm.tick(f'{phase_name} finished.')
with PM.time_monitor('last infer'):
poses = torch.cat([inputs['poses_orient'], inputs['poses_body']], dim=-1).detach().clone() # (B, 46)
betas = inputs['betas'].detach().clone() # (B, 10)
cam_t = inputs['cam_t'].detach().clone() # (B, 3)
skel_outputs = self.skel_model(poses=poses, betas=betas, skelmesh=False) # (B, 44, 3)
optim_kp3d = skel_outputs.joints # (B, 44, 3)
# Evaluate the confidence of the results.
focal_length_xy = np.ones((len(poses), 2)) * focal_length # (B, 2)
optim_kp2d = perspective_projection(
points = optim_kp3d,
translation = cam_t,
focal_length = to_tensor(focal_length_xy, device=self.device),
)
kp2d_err = SKELify.eval_kp2d_err(gt_kp2d, optim_kp2d) # (B,)
# ⛩️ Prepare the output data.
outputs = {
'poses' : poses, # (B, 46)
'betas' : betas, # (B, 10)
'cam_t' : cam_t, # (B, 3)
'kp2d_err' : kp2d_err, # (B,)
}
return outputs
def _can_early_quit(self, opt_params, prev_loss, curr_loss):
''' Judge whether to early quit the optimization process. If yes, return True, otherwise False.'''
if self.cfg.early_quit_thresholds is None:
# Never early quit.
return False
# Relative change test.
if prev_loss is not None:
loss_rel_change = compute_rel_change(prev_loss, curr_loss)
if loss_rel_change < self.cfg.early_quit_thresholds.rel:
get_logger().info(f'Early quit due to relative change: {loss_rel_change} = rel({prev_loss}, {curr_loss})')
return True
# Absolute change test.
if all([
torch.abs(param.grad.max()).item() < self.cfg.early_quit_thresholds.abs
for param in opt_params if param.grad is not None
]):
get_logger().info(f'Early quit due to absolute change.')
return True
return False
def _build_closure(self, *args, **kwargs):
# Using this way to hide the very details and simplify the code.
return build_closure(self, *args, **kwargs)
@staticmethod
def eval_kp2d_err(gt_kp2d_with_conf:torch.Tensor, pd_kp2d:torch.Tensor):
''' Evaluate the mean 2D keypoints L2 error. The formula is: ∑(gt - pd)^2 * conf / ∑conf. '''
assert len(gt_kp2d_with_conf.shape) == len(gt_kp2d_with_conf.shape), f'gt_kp2d_with_conf.shape={gt_kp2d_with_conf.shape}, pd_kp2d.shape={pd_kp2d.shape} but they should both be ((B,) J, D).'
if len(gt_kp2d_with_conf.shape) == 2:
gt_kp2d_with_conf, pd_kp2d = gt_kp2d_with_conf[None], pd_kp2d[None]
assert len(gt_kp2d_with_conf.shape) == 3, f'gt_kp2d_with_conf.shape={gt_kp2d_with_conf.shape}, pd_kp2d.shape={pd_kp2d.shape} but they should both be ((B,) J, D).'
B, J, _ = gt_kp2d_with_conf.shape
assert gt_kp2d_with_conf.shape == (B, J, 3), f'gt_kp2d_with_conf.shape={gt_kp2d_with_conf.shape} but it should be ((B,) J, 3).'
assert pd_kp2d.shape == (B, J, 2), f'pd_kp2d.shape={pd_kp2d.shape} but it should be ((B,) J, 2).'
conf = gt_kp2d_with_conf[..., 2] # (B, J)
gt_kp2d = gt_kp2d_with_conf[..., :2] # (B, J, 2)
kp2d_err = torch.sum((gt_kp2d - pd_kp2d) ** 2, dim=-1) * conf # (B, J)
kp2d_err = kp2d_err.sum(dim=-1) / (torch.sum(conf, dim=-1) + 1e-6) # (B,)
return kp2d_err
@rank_zero_only
def _tb_log(self, step_cnt:int, phase_name:str, log_data:Dict, *args, **kwargs):
''' Write the logging information to the TensorBoard. '''
if step_cnt != 0 and (step_cnt + 1) % self.cfg.logger.interval_skelify != 0:
return
summary_writer = self.tb_logger.experiment
# Save losses.
for loss_name, loss_val in log_data['losses'].items():
summary_writer.add_scalar(f'skelify/{loss_name}', loss_val, step_cnt)
# Visualization of the optimization process. TODO: Maybe we can make this more elegant.
if log_data['img_patch'] is None:
log_data['img_patch'] = [np.zeros((self.cfg.img_patch_size, self.cfg.img_patch_size, 3), dtype=np.uint8)] \
* len(log_data['gt_kp2d'])
if len(self.render_frames) < 1:
self.init_v = log_data['pd_verts']
self.init_kp2d_err = log_data['kp2d_err']
self.init_ct = log_data['cam_t']
# Overlay the skin mesh of the results on the original image.
try:
imgs_spliced = []
for i, img_patch in enumerate(log_data['img_patch']):
kp2d_err = log_data['kp2d_err'][i].item()
img_with_init = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = self.init_v[i],
K4 = [self.cfg.focal_length, self.cfg.focal_length, 128, 128],
img = img_patch,
Rt = [torch.eye(3), self.init_ct[i]],
mesh_color = 'pink',
)
img_with_init = annotate_img(img_with_init, 'init')
img_with_init = annotate_img(img_with_init, f'Quality: {self.init_kp2d_err[i].item()*1000:.3f}/1e3', pos='tl')
img_with_mesh = render_mesh_overlay_img(
faces = self.skel_model.skin_f,
verts = log_data['pd_verts'][i],
K4 = [self.cfg.focal_length, self.cfg.focal_length, 128, 128],
img = img_patch,
Rt = [torch.eye(3), log_data['cam_t'][i]],
mesh_color = 'pink',
)
betas_max = log_data['optim_betas'][i].abs().max().item()
img_patch_raw = annotate_img(img_patch, 'raw')
log_data['gt_kp2d'][i][..., :2] = (log_data['gt_kp2d'][i][..., :2] + 0.5) * self.cfg.img_patch_size
img_with_gt = annotate_img(img_patch, 'gt_kp2d')
img_with_gt = draw_kp2d_on_img(
img_with_gt,
log_data['gt_kp2d'][i],
Skeleton_OpenPose25.bones,
Skeleton_OpenPose25.bone_colors,
)
log_data['pd_kp2d'][i] = (log_data['pd_kp2d'][i] + 0.5) * self.cfg.img_patch_size
img_with_pd = cv2.addWeighted(img_with_mesh, 0.7, img_patch, 0.3, 0)
img_with_pd = draw_kp2d_on_img(
img_with_pd,
log_data['pd_kp2d'][i],
Skeleton_OpenPose25.bones,
Skeleton_OpenPose25.bone_colors,
)
img_with_pd = annotate_img(img_with_pd, 'pd')
img_with_pd = annotate_img(img_with_pd, f'Quality: {kp2d_err*1000:.3f}/1e3\nbetas_max: {betas_max:.3f}', pos='tl')
img_with_mesh = annotate_img(img_with_mesh, f'Quality: {kp2d_err*1000:.3f}/1e3\nbetas_max: {betas_max:.3f}', pos='tl')
img_with_mesh = annotate_img(img_with_mesh, 'pd_mesh')
img_spliced = splice_img(
img_grids = [img_patch_raw, img_with_gt, img_with_pd, img_with_mesh, img_with_init],
# grid_ids = [[0, 1, 2, 3, 4]],
grid_ids = [[1, 2, 3, 4]],
)
img_spliced = annotate_img(img_spliced, f'{phase_name}/{step_cnt}', pos='tl')
imgs_spliced.append(img_spliced)
img_final = splice_img(imgs_spliced, grid_ids=[[i] for i in range(len(log_data['img_patch']))])
img_final = to_tensor(img_final, device=None).permute(2, 0, 1) # (3, H, W)
summary_writer.add_image('skelify/visualization', img_final, step_cnt)
self.render_frames.append(img_final)
except Exception as e:
get_logger().error(f'Failed to visualize the optimization process: {e}')
traceback.print_exc()