Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,14 @@
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
import gradio as gr
|
|
|
|
|
4 |
|
5 |
-
device
|
|
|
6 |
torch_dtype = torch.float32
|
7 |
|
|
|
8 |
model_id = "KBLab/kb-whisper-large"
|
9 |
|
10 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
@@ -22,14 +26,30 @@ pipe = pipeline(
|
|
22 |
torch_dtype=torch_dtype,
|
23 |
)
|
24 |
|
25 |
-
def transcribe(
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
gr.Interface(
|
30 |
fn=transcribe,
|
31 |
inputs=gr.Audio(type="filepath", label="Upload Swedish Audio"),
|
32 |
outputs=gr.Textbox(label="Transcribed Text"),
|
33 |
title="KB-Whisper Transcriber (Swedish, Free CPU)",
|
34 |
-
description="Transcribes Swedish
|
35 |
).launch(share=True)
|
|
|
1 |
import torch
|
2 |
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
3 |
import gradio as gr
|
4 |
+
from pydub import AudioSegment
|
5 |
+
import os
|
6 |
|
7 |
+
# Set device and precision for CPU
|
8 |
+
device = "cpu"
|
9 |
torch_dtype = torch.float32
|
10 |
|
11 |
+
# Load KB-Whisper model (Large variant)
|
12 |
model_id = "KBLab/kb-whisper-large"
|
13 |
|
14 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
|
|
26 |
torch_dtype=torch_dtype,
|
27 |
)
|
28 |
|
29 |
+
def transcribe(audio_path):
|
30 |
+
# Handle m4a or other formats by converting to wav
|
31 |
+
base, ext = os.path.splitext(audio_path)
|
32 |
+
if ext.lower() != ".wav":
|
33 |
+
try:
|
34 |
+
sound = AudioSegment.from_file(audio_path)
|
35 |
+
audio_converted_path = base + ".converted.wav"
|
36 |
+
sound.export(audio_converted_path, format="wav")
|
37 |
+
audio_path = audio_converted_path
|
38 |
+
except Exception as e:
|
39 |
+
return f"Error converting audio: {str(e)}"
|
40 |
|
41 |
+
# Transcribe
|
42 |
+
try:
|
43 |
+
result = pipe(audio_path, chunk_length_s=30, generate_kwargs={"task": "transcribe", "language": "sv"})
|
44 |
+
return result["text"]
|
45 |
+
except Exception as e:
|
46 |
+
return f"Transcription failed: {str(e)}"
|
47 |
+
|
48 |
+
# Build Gradio interface
|
49 |
gr.Interface(
|
50 |
fn=transcribe,
|
51 |
inputs=gr.Audio(type="filepath", label="Upload Swedish Audio"),
|
52 |
outputs=gr.Textbox(label="Transcribed Text"),
|
53 |
title="KB-Whisper Transcriber (Swedish, Free CPU)",
|
54 |
+
description="Upload .m4a, .mp3, or .wav files. Transcribes Swedish speech using KBLab's Whisper Large model.",
|
55 |
).launch(share=True)
|